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Abstract—Permissioned Blockchains are increasingly consid-
ered in enterprise use-cases, many of which do not require geo-
distribution, or even disallow it due to legislation. Examples in-
clude country-wide networks, such as Alastria, or those deployed
using cloud-based platforms such as IBM Blockchain Platform.
We expect these blockchains to eventually run in environments
with high bandwidth and low latency modern networks, as well
as, advanced programmable hardware accelerators in servers.

Even though there is renewed interest in BFT consen-
sus algorithms with various proposals targeting Permissioned
Blockchains, related work does not optimize for fast networks
and does not incorporate hardware accelerators – we make the
case that doing so will pay off in the long run. To this end, we re-
implemented the seminal PBFT algorithm in a way that allows us
to measure different configurations of the protocol. Through this
we explore the benefits of various common optimization strategies
and show that the protocol is unlikely to saturate more than
10Gbps networks without relying on specialized hardware-based
offloading. We discuss two concrete ways in which the cost of
consensus in Permissioned Blockchains could be reduced in high
speed networking environments, namely, offloading to SmartNICs
and implementing the protocol on standalone FPGAs.

I. INTRODUCTION

Blockchain is an emerging technology, considered increas-
ingly often beyond the crypto-currency world for business-to-
business use-cases. In contrast to public blockchains such as
Bitcoin, that are open systems in which anyone can participate,
in business-to-business scenarios the membership of the ser-
vice is tightly controlled and this permits the use of Byzantine
fault tolerant (BFT) consensus protocols at the core of the
service to establish a total order of transactions, instead of
the more expensive Proof-of-Work-based consensus protocols.
Such systems are called permissioned blockchains [10], [15],
[38]. In a permissioned blockchain system, often only a
subset of the total number of participating nodes run the BFT
protocol [8], [34] and, in general, members have more control
over how and where to run the network [27].

Driven by opportunities in blockchain, there has been an
increased interest in BFT consensus protocols [45], [25],
[41]. Interestingly, the deployment model of permissioned
blockchains can be very different from permissionless ones
likes Bitcoin. While the latter is typically widely distributed,
with bandwidth and latency characteristics much like that of
the world wide web, in the permissioned blockchain space,
there are use cases where nodes are under tighter control
(e.g., those in hosted environments on Amazon Managed

Blockchain [1] or IBM Blockchain Platform [4]), perhaps
even geographically confined (e.g., emerging country-wide
networks, such as Alastria [37] in Spain). Nodes of such de-
ployments have access to more bandwidth, lower latency com-
munication than what we associate today with blockchains.
Given the increasing presence of programmable hardware
devices in public clouds [23], [14], [30], it is likely that
nodes could even rely on these for increasing performance.
If successful, blockchain technology will likely replace sev-
eral database solutions in the area of banking, trading and
e-commerce but the performance of today’s permissioned
blockchains will not be satisfactory. For this reason, it is
important to start investigating strategies for increasing the
speed of BFT consensus using modern hardware available
in the clouds and datacenters. As we show in Section II,
current BFT consensus implementations are unable saturate
bandwidths of 10Gbps and higher, while retaining low latency.

Our goal is to investigate how far can software get us and
to what extent will it be useful, or even necessary, to use
hardware accelerators in the future. We apply a experiment-
driven approach to quantify the benefits of various existing
optimization strategies. For this, we build a framework that
integrates a streamlined variant of the seminal PBFT [18],
[17] consensus protocol and can be configured at multiple
levels. Our study reveals that, even after applying various opti-
mizations, achieving 10Gbps performance in software without
relying on very large batches is still unlikely – the road the
100Gbps rates will hence have to involve some forms of
hardware accelerators. We can also confirm that contrary to
anecdotal evidence, hardware accelerators for cryptographic
operations alone will not result in significantly better per-
formance because the biggest cost, even in modestly sized
consensus groups, is that of packet parsing and hashing, that
is, data-movement related operations.

To alleviate the cost of these operations, we propose
two strategies for incorporating specialized hardware, namely,
emerging Smart Network Interface cards (SmartNICs) and
standalone FPGA nodes to provide line-rate, predictable be-
havior. We present micro-benchmarks motivating these strate-
gies and discuss their main benefits and open challenges.

Overall, this work brings three contributions:

• We identify the future need for low latency and high
bandwidth BFT consensus. Even though today the chal-
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lenges of Permissioned Blockchains lie in determining
the right governance model and integration with data
management solutions, if successful, these blockchains
will have to provide high throughput, low latency, and the
ability to scale with faster networks and more powerful
hardware.

• We provide an open-source framework1 for experiment-
ing with various software and hardware strategies for
accelerating PBFT and similar protocols.

• Based on measurements carried out with our framework,
we identify two specific hardware acceleration scenarios
that will be able to saturate 10Gbps and faster networks
even for small consensus groups.

II. MOTIVATION

In this section, we motivate the need for investigating
performance-related aspects of BFT consensus protocols in
environments with high network bandwidth and low latency.
We first discuss three use-cases in which consensus nodes
are geographically confined by design or have access to high
bandwidth networking and their location can be controlled.
Second, we show that state-of-the-art BFT consensus cannot
efficiently take advantage of fast networks, further motivating
the “de-construction” of the underlying protocol for measure-
ment purposes.

A. Use-cases

Single and Multi-Cloud Hosted Blockchains. Several cloud
providers are offering hosted blockchain solutions both as
Software as a Service (e.g., Azure Blockchain Service), and
by simplifying the deployment of open-source, commonly
used, networks such as Hyperledger Fabric (e.g., in IBM
Cloud Blockchain Platform). Given that a large portion of
web-facing applications already run in hosted environments,
running blockchains as a “backend” in the cloud is a natural
step in many scenarios. In cloud environments the blockchain
nodes have access to high bandwidth networking and low
latencies within regions, and it is also to be expected that
with the emergence of more enterprise use-cases for permis-
sioned ledgers, multi-cloud deployments will rely on dedicated
links for higher bandwidth across clouds and reduced data
movement costs, as it is already the case for CDNs. For this
reason, when preparing the next generation of Blockchain-
focused BFT consensus libraries, it is crucial to design with
high bandwidth (10Gbps and above) and low latency networks
in mind.

Regional Replication by Design. There are emerging country-
wide permissioned blockchain networks such as Alastria [8],
[37] in Spain, that set out to provide a mechanism for any
company within a consortium to interact with any other one
through smart contracts that are recognized under the local
legislation. For this reason, these kinds of networks are run in
geographically more confined environments. Furthermore, in
this type of networks, only a small subset of the consortium

1Link removed for double blind submission.
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Fig. 1. State-of-the-art BFT consensus libraries fail to efficiently utilize
10Gbps LAN connections (BFT-Smart with 7 nodes, 4KB payload, no
logging)

nodes take part actively in consensus (i.e., running the core op-
erations of the network), making them the critical performance
point of the network. Thus, due to these two characteristics,
we expect the consortium to optimize the environment in
which consensus nodes are deployed. Hence, when this type of
networks matures, we expect the group of consensus nodes to
run in a environment with high bandwidth and low latency, as
well as, have advanced programmable hardware accelerators
(already commonly found in servers) at their disposal.

Geo-replicated Systems with Local Optimizations. The re-
cent work by Gupta et al. [27], called ResilientDB, argues that,
in order to build practical geo-distributed databases based on
blockchain technology, it is crucial to minimize cross-region
communication between nodes without reducing reliability or
availability guarantees. The proposed design has a hierarchical
consensus mechanism that runs several BFT consensus groups,
with nodes close by, and performs a geo-replication using a
step that requires only a linear number of messages in the
failure-free case. Thus, given that the performance of the
consensus groups would drive the overall performance of the
system and that nodes within a group are close by, one can
expect these groups to be deployed in a environment with high
network resources.

B. State-of-the-art BFT Consensus and Fast Networks

To experimentally show that state-of-the-art BFT consensus
protocols are unable to take advantage of fast networks, we
measure the performance of BFT-Smart [13], one of the
most optimized BFT consensus libraries available, on such
networks. We have chosen BFT-Smart for a few reasons: (i)
with more that five years of development, we consider it a
serious attempt of implementing a highly-performant BFT
consensus, (ii) it integrates a consensus protocol similar to
the seminal PBFT protocol, on which most of the modern
BFT consensus protocols are based, (iii) it includes a set of
optimizations and refinements aiming to enhance performance
such as multi-core awareness and the use of cheaper crypto-
graphic operations when possible, and (iv) it is open source
and actively supported.



Fig. 2. In permissioned blockchains a coordination service authenticates nodes in the network and performs configuration. There are significantly less
consensus nodes than regular member nodes and their churn is minimal.

We configured BFT-Smart with 7 nodes with RSA1024
signatures and MACs among the nodes, on server-grade ma-
chines connected over a 10Gbps LAN (see the Experiments
section for details). We experiment with two batch sizes: 1000
request per batch (the default), and a smaller one with 8
requests per batch. Figure 1 reports the average latency vs.
throughput achieved by BFT Smart when running the YCSB
benchmark2 with 4KB values. The experiments show that the
leader node is far from saturating the network connection. In
fact, it uses significantly less than 2Gbps-worth of bandwidth
even at saturation – showing that there is a need to explore how
to design BFT consensus solutions that can saturate 10Gbps
bandwidth, and beyond.

Furthermore, BFT-Smart is unable to keep latencies con-
sistently low while delivering high throughput. As Figure 1
shows, BFT-Smart exhibits a latency that is more than an order
of magnitude greater than the network’s response time. This
is mainly because, in order to enhance throughput, BFT-Smart
employs batching aggressively: it composes large batches of
messages in an attempt to reduce the overhead of consensus.
Figure 1 shows that when significantly reducing the batch size,
the difference in throughput is stark: the throughput drops by
4x. In this work, we investigate the inherent tension between
latency and throughput in BFT consensus protocols.

III. BACKGROUND

A. Permissioned Blockchains

Public blockchains are often associated with crypto-
currencies and are characterized by the fact that nodes can
join without permission. For this reason, many of these
blockchains implement Proof of Work, or similar, consensus
methods [42] and are designed without assumptions about the
nodes. Permissioned ledgers [10], [15], [38], in contrast, rely
on a trusted service or consortium to authenticate nodes when
joining the blockchain, but do not assume trustworthiness of
nodes. This is useful in business-to-business scenarios where
the goal of the blockchain is not to offer anonymity but

2Default YCSB configuration from the BFT-Smart repository: updates only
and a single field per entry to avoid computational overhead in the nodes

rather to logically centralize data and run tamper-free “smart
contracts”, application logic, on it. Example use-cases include
ones in health care [11], supply chain management [32], etc.,
but also in areas such as banking and capital markets [16]. In
these scenarios all actors in the system are known but they
want to protect against malicious actions from the others.

As seen in Figure 2, permissioned blockchains are com-
posed of executor nodes and consensus nodes. For generality,
we consider these sets of nodes to be disjoint but, in practice,
a node could implement both roles. Clients of the blockchain
system, i.e., users, are external to this illustration. The coor-
dination service shown in the image is the trusted third party
or consortium of nodes (that all members of the blockchain
trust) that authenticates nodes, configures the network, etc.

Permissioned ledgers usually provide one of two execution
models: order-execute (OE), or execute-order-validate (EOV).
The first means that smart contracts with their specific inputs
are submitted first to the ordering service, that is, the consensus
nodes, and then executed on all nodes of the network. The
EOV model simulates the contract execution on a subset of the
nodes and submits the resulting “read-write set” for ordering.
The nodes receive these from the ordering service and update
their state if the read-write sets do not conflict with the ledger
state. Even though these two models offer different trade-offs,
from the perspective of the underlying consensus logic, they
are very similar. For this reason in this work we investigate
BFT ordering without assuming one or the other execution
model.

The question of how executor nodes “get” the ordered trans-
actions is also orthogonal to our investigation. We make the
assumption that, in general, executor nodes are interested in
pulling transactions from the ordering service as soon as they
are ordered (they can access at the block granularity to recover
and to gossip). With this assumption it is beneficial to explore
not only the throughput but also the latency improvements
one could add to BFT protocols. This is relevant as there is
recent work on exploring how the throughput [24], [40], [9]
and latency [29] of blockchains can be improved substantially
in the presence of fast networks.
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B. PBFT

The seminal PBFT [18] protocol is one of the most well-
studied protocols and that is why we use it in our study. The
protocol requires a minimum of 3f + 1 nodes to tolerate f
faulty nodes. For simplicity, in this section, we consider the
variant of PBFT that uses public-key signatures. We depict its
communication pattern in Figure 3.

The protocol proceeds in rounds called views. On each
view, one node is the leader and the rest are its followers.
The protocol moves to the next view only if the leader is
faulty or if asynchrony prevents the protocol to make progress.
The process of changing view is called view-change. At a
given view v, the leader sequences and proposes client’s
request in a PRE PREPARE message to the followers. When
a follower receives a PRE PREPARE message, it first validates
the leader’s proposal by checking the authenticity of the
client’s request and that it does not have another client request
already assigned to that sequence number. If the follower
accepts the request, it sends a PREPARE message to all nodes.
When a node (leader or follower) receives 2f + 1 matching
PREPARE messages, it considers the request as prepared and
sends a COMMIT message to all nodes. Intuitively, theses first
two steps of the protocol (leader’s proposal and the all-to-
all communication step) ensure that correct nodes agree on
a total order for the requests within a view. When a node
receives 2f + 1 matching COMMIT messages for a client’s
request and all requests with a lower sequence number have
been committed locally, the node considers the request as
committed and replies to the client. This second all-to-all
communication step, together with the view-change protocol,
guarantees that correct replicas agree on the sequence numbers
assigned to committed requests even when committing them
across views. Finally, a client waits for f+1 matching replies
before accepting the result.

When a node wants to move to the next view v + 1, it
first stops executing the protocol and sends a VIEW CHANGE

message to all nodes. A node sends in its VIEW CHANGE

message all client requests that could have been committed.
When the leader of v + 1 gathers 2f + 1 of these messages,
it computes the final set of potentially committed requests O
and sends it in a NEW VIEW message to its followers, together
with the 2f + 1 VIEW CHANGE messages based on which O
was computed. Upon reception of a NEW VIEW message, a
follower first verifies the correctness of O. Then, it adds the

Fig. 4. The consensus logic is implemented as a software pipeline, with data
parallel execution for more compute-intensive steps.

new information to its local state and resumes execution.

IV. EXPERIMENTAL FRAMEWORK

Our main goal is to study the effect of various optimizations
of BFT consensus with the permissioned blockchain use-case
in mind. Our framework integrates a streamlined variant of
PBFT [18], [17]. We expect that the findings of this work
are directly applicable to other BFT consensus protocols [26],
[33], [45], [41], that mostly are optimized variants of PBFT.

One difference between our experimental framework and
typical BFT consensus implementations is that we do not rely
on batching by default. Our goal is to study the cost of running
consensus without batching, or with very small batches, to
ensure that the latency of the protocol is representative of the
underlying network latency.

A. Design

Implementing consensus protocols on multi-core CPUs
leads to the question of how to exploit the available parallelism
given that at their core, all protocols, including PFBT, require
a serial decision making step. Many BFT and CFT consensus
implementations adopted a pipelined architecture [19], [39],
[13] and in this work we do the same. At its core, our
framework integrates PBFT?, a streamlined variant of PBFT.

Pipelined architectures are also beneficial because it is easier
to envision the integration of various accelerators than into
monolithic ones. One drawback, however, of the pipelining
approach is that performance can be bottlenecked on the slow-
est pipeline stage; for this reason we will consider parallelism
both across pipeline stages and within pipeline stages wherever
possible.

The framework is parametric to the type of cryptographic
operation used for the authentication of different message
types: one can choose between public-key (PK) signatures



or message authentication codes (MACs). We use in our
experimental analysis the following three configurations:

1) Off-the-shelf: This variant makes no assumptions about
the system around it and uses PK signatures on all
messages.

2) Algorithmic optimizations: It replaces PK signatures with
MACs on all inter-node messages, similar to the optimiza-
tions described in the journal version of PBFT [17].

3) Domain-optimized for Permissioned Blockchains: It fur-
ther eliminates PK signatures on responses to clients
because client requests (transactions to order) will be
logically packed into blocks and it is enough to sign the
blocks with a PK and responses to clients with MACs.

Incoming messages from clients are by default using
private-key signatures in all variants to counter malicious
clients (i.e., big-MAC attack [20]).

Furthermore, one can finely tune the batching sizes to
explore the latency-throughput tradeoff when combined with
cryptographic operations; and the parallelism of tasks, such as
the computation or verification of cryptographic signatures.

Figure 4 shows the stages in our implementation that follow
the main steps of the protocol. The only part of the behavior
that requires more explanation is the sending hashing and
signing: The Hash(TX) step hashes messages to prepare them
for signing/authentication. The operation in carried out in
parallel for multiple messages (round-robin). Once messages
have their hashes computed, they are cloned to create multiple
copies of them to be sent later to individual recipients. If,
for instance, a PRE PREPARE message has to be sent to all
participants, it is hashed once in the previous step and then
cloned in this step for each recipient. The Sign/Auth. step
computes the signature/MAC to be attached to each message
in parallel. This layout is advantageous because by default
our implementation is set up to compute different signatures
and MACs for each recipient. For protocol variants in the
evaluation that only use public-key signatures, this step is
merged with hashing to avoid redundant computation.

B. Implementation

Pipeline Execution Model. The PBFT?’s pipeline decouples
the building blocks of the protocol and allows for future
exploration of different acceleration opportunities (Figure 4).
The stages are as follows:

1) Unmarshal: incoming messages are received on TCP/IP
connections and unmarshaled, using one thread for each
individual node and client.

2) Hash (RX) and Verify: each message is signed by its
sender using their private-key or authenticated using a
MAC. In either case, the message contents need to be
hashed and this hash has to be compared to the one
in the signature/auth. This operation is performed by
multiple threads in a data-parallel manner using round-
robin scheduling to maintain FIFO order of messages.

3) Decision: This is where the protocol itself is running.
Depending on the internal state and the content of the

incoming message, this step will produce one or multiple
messages with a list of recipients each.

4) Hash (TX): This step hashes messages to prepare them
for signing/authentication. The operation in carried out in
parallel for multiple messages (round-robin).

5) Clone: Once messages have their hashes computed, this
step creates multiple copies of them to be sent later to
individual recipients. If, for instance, a PRE PREPARE

message has to be sent to all participants, it is hashed
once in the previous step and then cloned in this step for
each recipient.

6) Sign/Auth: This step computes the signature/MAC to be
attached to each message in parallel. This layout is advan-
tageous because by default PBFT? is set up to compute
different signatures and MACs for each recipient. For
protocol variants in the evaluation that only use public-
key signatures, this step is merged with hashing to avoid
redundant computation.

7) Marshal: Signed messages with one recipient each are en-
queued on threads representing individual TCP/IP sock-
ets. These perform the serialization of the messages.

Implementation Decisions and Optimizations. We imple-
mented our prototype in Golang relying heavily on goroutines
for parallelism. We use the SHA256 cryptographic hash func-
tion to compute digests, RSA-2048 for signatures and AES
with 256bit keys for MACs, using default Golang libraries.
The messages exchanged between nodes are serialized using
Protocol Buffers and follow a similar layout with a fixed set
of integer fields followed by a variable length “attached data”
field.

Since we do not want to restrict the applicability of our
prototype, the messages coming from the clients are treated
as BLOBs that are recorded in a log. They are not applied,
in the traditional sense, to a state database. This is because
in most blockchain systems the ordering service does not
actually look at the contents of “transactions”. And even if
some processing of these transactions would be necessary, it
can be performed off the critical path. This choice, however,
introduces a question related to state compaction. While in
state machine replication this can happen implicitly at specific
intervals on all nodes (e.g., after each successful checkpoint),
in a scenario we are looking at, compaction can only be done
from the “outside” when all clients can agree. In our prototype
we keep a log of 10k operations in memory that acts as a
circular buffer and we have set the checkpointing frequency
to 500 messages to keep most of the data structures fit in cache.
In a full implementation, the log would have to be written to
disk asynchronously for durability, and a suitable compaction
method would have to be chosen.

Similarly, there is a decision to be had in the system whether
the blockchain entries can be gossiped or not by the clients.
If no (our default assumption), it is sufficient to use MACs to
authenticate messages between ordering nodes and clients and
for each new client to read blocks directly from the ordering
service when recovering state. If yes, the nodes need to sign
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client responses with a PK signature. Our prototype offers both
options and the signatures can be enabled with an environment
variable. Incoming messages from clients are by default using
private-key signatures, even if the answers are only signed with
MACs, to counter malicious clients (big-MAC attack [20]).

V. STUDY OF PROTOCOL VARIANTS

All experiments are performed on a consensus group of 15
nodes, with the clients issuing either requests with 512 B or
4096 B values. We chose these two sizes close to the average
size of a Bitcoin transaction [2] and more general smart
contracts reported in Fabric [10]. We do not use batching,
unless otherwise stated, because with new latency-focused
designs for permissioned blockchains [29], [24], [9] and the in-
creasingly fast networking in cloud environments, we believe it
is important to investigate the protocol without compromising
its latency. The theoretical maximum throughput, excluding
TCP/IP overhead and without batching, over 10Gbps network
is just above 80 kops/s for 512 B and 19 kops/s for 4096 B
values. We perform our evaluation on a 10 Gbps cluster of 24
machines with 6 core Intel Xeon E-2186G CPUs. All machines
run recent versions of Debian linux and Go v1.10.

A. What is the performance of off-the-shelf protocols on fast
networks?

In Figure 5 we show the throughput of “off-the-shelf” BFT,
using public-key (PK) cryptography for signing all messages.
The numbers are low (less than 800 ops/s) due to the high
computational cost of creating signatures, even though the
system uses all cores of the machine. In this scenario, any
method of accelerating the crypto operations will be beneficial.
In our example, using a faster module for cryptographic
operations (“+Acc”) leads to 4X increase in throughput.
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Fig. 6. The aggregate cost of each pipeline stage in a domain-optimized setup
(in CPU cycles) at the leader for 15 nodes, processing 4KB values, shows
that (un)marshaling and hashing before verification are the most expensive.

B. How much can be gained by using MACs instead of
signatures?

The second class of BFT deployments replace PK signatures
on inter-node traffic with MACs [17] that are orders of
magnitude cheaper to compute than signatures. The throughput
of the system increases to more than 2.6 Kops/s and is, in fact,
on par with the PK-Only version with acceleration. Since the
nodes still spend significant resources on signing responses to
clients with a PK, adding crypto acceleration is beneficial. It
brings, however, a smaller benefit than in the previous case,
that is, around 2.5X vs. 4X. Even though in this experiment
we do not consider batching, it is worth pointing out that the
MAC-based version is an upper bound of throughput for the
off-the-shelf version with batching at the leader – however
batching hundreds of requests to amortize the PK signing cost
on protocol messages would impact latencies significantly.

C. How much can be gained by optimizing to the domain of
permissioned blockchains?

If nodes use MACs between themselves, as well as, to an-
swer to clients, performance increases significantly, even when
those rely on acceleration, there is almost a 2X difference
in throughput for small values. Using the domain-optimized
version and issuing large 4096 B values, it is possible to
achieve more than 60% of the theoretical maximum throughput
without relying on any type of batching. For smaller, 512 B
values, only 25% of the maximum is reached. It has to be
noted that for completeness, signatures have to be computed
periodically (e.g. at checkpoints) on the data to allow for
recovery at a coarser granularity, as well as to allow clients to
exchange “blocks” among themselves.

D. What operations are costly beyond signatures?

To understand the reason why crypto acceleration provides
diminishing results in the domain-optimized case, we show
a breakdown of compute costs for each message type in the
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leader of a group of 15 in Figure 6 (we ignore parallelism here
and compute the aggregate time spent on each part). Thanks
to the MAC optimization, the biggest cost in handling requests
is the time it takes to (un)marshal them and to compute their
SHA256 hash for verification. With larger consensus groups,
the relative cost of these operations will increase further as
there will be more messages sent between nodes. When using
smaller values, the cost of hashing is reduced linearly, but the
cost of (un)marshaling is not reduced significantly. Hence, for
simplicity we omit other data sizes from this discussion. If we
compare these costs with an implementation that signs client
responses with RSA2048, this would increase the Signing cost
to the order of 4.5m cycles (around 1.2 ms on our CPUs). This
illustrates why avoiding its computation on client responses
lead to speedup in Figure 5 (PK-Only vs. MACs).

E. Additional Evaluation of Our Prototype

In this subsection we look at our prototype implementation
as a domain-optimized BFT consensus service with recon-
figuration and measure its performance in a cluster to show
that it achieves low latency and high throughput even without
hardware acceleration, making it a realistic starting point for
implementing such functionality.

In Figure 7 we measure the throughput of our prototype
with increasing consensus group sizes. The behavior is in
line with the expectations of a leader-based protocol. The
system delivers for 15 nodes more than 17 kops/s for the
smallest value size and 10 kops/s respectively 5 kops/s for the
4 and 8 KB value sizes. The expectation is to scale to larger
groups without issues, with a linear decrease in performance.
The demonstrated throughput numbers are high enough to
ensure that integration of PBFT? with blockchains such as
Hyperledger Fabric [10] is possible without becoming an
immediate bottleneck.

With the deployment of permissioned ledgers in datacenter-
like environments, it is important that the underlying BFT
consensus can be performed with low latency. As shown in
Figure 8, the average response time of our prototype starts
from the sub-millisecond range for small values and increases
slowly with load. Even close to saturation, the response time is
only factor of three larger then in the unloaded case. While it is
not our focus to compare to BFT-Smart since our prototype is
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meant as a platform for future exploration, not as a production-
ready solution, it is worth pointing out that the latency stays
under 3.5ms at all times, which is the lowest measured in
Figure 1.

Overall, low and predictable latency that does not increase
significantly with load is important because it ensures that
the consensus nodes will not be the latency bottleneck. Even
though most permissioned blockchains today do not optimize
for latency at the millisecond level, as we discuss in the
Related Work section, there are emerging blockchain designs,
e.g. [29], [9], that could readily benefit from lower latency
consensus.

VI. INSIGHTS AND ACCELERATION STRATEGIES

Related works have shown that replacing PK signatures with
MACs can improve performance but the improvements are
seldom quantified. In this work, by measuring the difference
in the same system, we reach a counter-intuitive insight: when
adding crypto acceleration to the most optimized version, the
performance gains are only marginal because client signa-
tures can be verified in parallel, and block signatures can
be computed on the side of normal operation. As the cost
drill-down shows, for the domain-optimized case, the more
significant opportunities are in acceleration of data movement
and hashing. These will provide a bigger benefit than focusing
solely on crypto accelerators. In the remaining we discuss two
promising acceleration strategies to help reach 10Gbps line-
rate performance and beyond. In preparation for their imple-
mentation, we present micro-benchmarks further motivating
them and discuss their main benefits and challenges.

A. Offloading to SmartNICs

Figure 6 shows that (un)marshaling and hashing costs
account for a significant portion of the runtime even if we don’t
factor in signature verification. Today, there is an emerging
offering of SmartNICs [23], [44], [22] that, in the future,
could be used to offload some of these operations, e.g.,
serialization of messages and line-rate hashing. Furthermore,
there are recent related works that use Mellanox NICs to
offload TLS [35], which could be used as an equivalent of
MACs.

The main question that arises when proposing the use of
such SmartNICs is whether to treat them a) as a “stateless”
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Fig. 9. Our prototype takes advantage of the 10Gbps bandwidth available at
the leader, but to achieve an almost complete utilization of it some amount
of batching is necessary.

accelerator that can, for instance, parse packets but does not
access application state, or b) as a “stateful” one that can
in addition also clone and send messages to different peers
depending on the application state.

The first case already allows one to offload hashing and
parsing, as well as, marshaling to the device, but to estimate
the benefits of exposing more of the protocol’s state to the
NIC, we need to evaluate how efficient the current software
version is when interfacing with the network. To this end,
we plot in Figure 9 the useful bandwidth usage at the leader
(goodput) with an increasing batching factor. Batching is im-
plemented in the leader node by waiting for multiple messages
from clients, assembling them into a vector and issuing a
single PRE PREPARE message for them. If there would be no
TCP/IP and Ethernet overhead, it would be possible to achieve
at most 10Gbps goodput in our setup, but in reality, even for
very large packets the limit is lower. The results show that
without batching, it reaches up to 6Gbps goodput for large
values (4 and 8 KB) and around 2Gbps for small ones (512 B).
Moderate batching of 4 to 8 requests can result in a better TCP
stack utilization and at the leader goodput can reach more
than 7Gbps for large requests and 4Gbps for small ones. This
comes at the cost of higher response times, though with these
batching factors, the differences remain small.

Based on this result, we foresee that for network speeds
beyond 10Gbps, SmartNICs will be a sensible acceleration
option. They will have to offload parts of the packet-processing
operations and rely on fine-grained batching with strict latency
guarantees that would be unfeasible to achieve in software.

B. PBFT on Standalone FPGAs

Various types of hardware accelerators have been recently
used to accelerate CFT consensus [28], [21], [43], [36],
[30]. These solutions demonstrate latencies in the order of
microseconds and are able to saturate the network regardless of
the value sizes, thanks to the reduced overhead of the network
stack and the low cost of data movement between network
interface and the decision logic. They also bring predictable
response time behavior which enables them to fulfill strict
SLAs in low latency environments. If we investigate the
distribution of response times and the variance at the tail of our
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Fig. 10. Our prototype implementation highlights additional opportunities
for HW: reducing the long tail of response times under load (15 nodes and
4KB payload)

software prototype, we see a significant increase in the high
percentiles of response times, even if the median does not
shift by much (Figure 10). In deployments where SLAs are
important, standalone FPGA-based implementations could be
beneficial because there are less factors influencing response
times.

Even though hardware-based solutions provide microsecond
latencies and high throughput, one challenge in this space has
been the feasibility of handling not only the failure-free case
but implementing reconfiguration as well. There is prior work,
e.g. [28], that demonstrates that it is possible to implement re-
configuration for an atomic broadcast protocol on FPGAs and,
in terms of communication patterns and metadata structures,
PBFT is not significantly more complex. However, there is a
significant difference between BFT and CFT algorithms in that
the former requires the computation and verification of crypto-
graphic hashes and signatures. This additional requirement, in
particular RSA, make implementation challenging on FPGAs.
This is because RSA (and similar ciphers) require iterative
computation that is, on the one hand, resource intensive and,
on the other hand, suffers from the relatively low clock rates of
FPGAs. Therefore, from the three BFT variants discussed in
this paper, only the domain-optimized is feasible on FPGAs
because it minimizes the need for cryptographic operations,
i.e., the rate of RSA ops/s.

To verify this claim, we rely on open source cores to
estimate the cost of an implementation. By computing the
maximum 10Gbps client-facing throughput at the leader as
a function of minimum consensus group size and minimum
value size, we can estimate how many resources RSA-related
computations would take up on the FPGA. We use the RSA
core from the Xilinx Vitis Library [7] as a representative
instance and replicate it as many times as needed to match the
desired throughput level. In Figure 11 we show with dashed
lines how the cost of RSA computations decreases as the
minimum group size increases. This is because the leader
will send increasingly more intra-node messages than to/from
clients.

To estimate the total cost of a complete 10Gbps BFT
implementation in terms of logic resources, we synthesized a
10Gbps TCP/IP module with DRAM controller [6], SHA256
hashing cores [5], and AES [7] cores. For an estimate of the
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Fig. 11. Estimated resource consumption of a 10Gbps PBFT implementation
on FPGAs using open-source components targeting a minimum value size and
group size.

decision logic we relied on the CFT Atomic Broadcast module
in Caribou [3]. The resource cost of these modules was added
to the cost of RSA cores (sum shown as solid lines).

To put the logic resource numbers in perspective, we show
the capacity of a mid-range FPGA3 with the horizontal line.
Overall, this resource estimation is showing an encouraging
result: when using larger value sizes, or larger groups, even a
mid-range FPGA could implement PBFT at 10Gpbs line-rate.
Furthermore, given that there are also larger FPGAs on the
market, e.g., Amazon F1 instances have around 4 times larger
FPGAs, we are confident that it is realistic to implement in
the future BFT on stand-alone nodes.

VII. RELATED WORK

A. Protocol Variants and Optimizations

There is related work on implementing traditional BFT
protocols in such a way that benefits from the multi-core
parallelism of modern CPUs. A representative example is
BFT-Smart [13]. The pipelined implementation demonstrates
good performance on Gigabit networks. The way in which
reconfiguration is performed is similar to the one we propose
in PBFT? but the nodes have to do more complex operations to
perform state transfer. We chose not to use BFT-Smart as the
framework for this study because it has implicit design choices
related to, for instance, signatures, that would have made it
difficult to “simulate” different BFT variants. The results of
this work, nonetheless, apply to systems such as BFT-Smart.

There is an increasing interest in adopting the PBFT pro-
tocol for permissioned blockchain purposes. SBFT [26], for
instance, aims to reduce communication complexity by relying
on an so called “collector” node and threshold signatures, and
adding a fast path to the execution (similar to Zyzzyva [33]).
SBFT targets wide area networks and trades off bandwidth
for more compute-intensive operations. As we shown in this
work, however, in fast networking deployments there is plenty
of bandwidth and relying on private-key cryptography as the
default leads to sub-optimal use of the network resources.

Other recent work, such as HotStuff [45], explores how
view-changes can be made cheaper. It targets permissioned
blockchains that experience a high amount of failures or

3Xilinx xc7vx690t: 108k Logic Slices, 3600 DSPs and 1470 BRAMs.

churn among the consensus nodes and, as a result, will
require frequent view changes. The authors reduce the cost
of these operations by adding an extra communication phase
to each consensus round. In this work we assume business-to-
business use-case of permissioned ledgers where, even though
the clients of the system can be subject to churn, the core
consensus nodes rarely change. In this setting optimizing
for failure-free behavior is more beneficial. Nonetheless, our
findings will apply to solutions such as HotStuff, as long as
they are being executed in low latency environments.

Not surprisingly, the performance of PBFT and any similar
protocol, including PBFT?, is severely limited by the leader as
consensus groups grow. There is emerging work [41] that aims
to solve the leader bottleneck without fundamentally changing
the underlying protocol and instead relying on deterministic
scheduling and data sharding that fits the permissioned ledger
use-case well. Mir-BFT [41] achieves a near-linear increase
in throughput with each node added to the consensus group
and is competitive even when compared to ring replication
in terms of bandwidth usage. The findings of this work are
directly applicable to Mir, since its multi-leader approach is
fully orthogonal to the actual implementation of the BFT
protocol underneath.

B. Consensus and Specialized Hardware

Various types of hardware accelerators have been used to
accelerate CFT consensus algorithms [28], [21], [43], [36] and
they demonstrate latencies in the tens of microseconds and
are able to saturate the network regardless of the value sizes,
thanks to reducing the overhead of the network stack and the
data movement between network interface and the decision
logic. We believe that there is an emerging opportunity in
exploring how these ideas can translate to BFT consensus.

Other related work uses specialized hardware to implement
trusted computing elements and through this simplify the
typical three-round operation of BFT to two rounds [12], [31]
and reduce the number of necessary replicas to 2f + 1. Even
thought they show promising result and are well suited to fast
networks, these works introduce a different trust model for the
two “parts” of the nodes.

VIII. CONCLUSION

In this work we deconstructed a BFT consensus protocol
with the goal of forecasting the benefits of various acceleration
strategies. Our work is motivated by the emergence of permis-
sioned blockchain use-cases that can be ran in environments
with high bandwidth networking and low latencies and should
be able, in the future, to take advantage of a wide range of
acceleration options. Based on our study, comparing different
BFT consensus variants, we concluded that the key to achiev-
ing low latency and high throughput behavior is more complex
than just offloading cryptographic operations and instead will
require a clever combination of improvements to multiple
steps of the processing pipeline. This finding is a catalyst
for research into hybrid solutions, that combine software and
hardware in surprising ways.
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