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Abstract—Training Deep Neural Networks (DNNs) requires a
significant amount of time and resources to obtain acceptable
results, which severely limits its deployment in resource-limited
platforms. This paper proposes DarkFPGA, a novel customizable
framework to efficiently accelerate the entire DNN training on a
single FPGA platform. First, we explore batch-level parallelism
to enable efficient training on FPGAs. Second, we devise a novel
hardware architecture optimised by a batch-oriented data pattern
and tiling techniques to effectively exploit parallelism. Moreover,
an analytical model is developed to determine the optimal design
parameters for the DarkFPGA accelerator with respect to a
specific network specification and FPGA resource constraints.
Our results show that the accelerator is able to perform about 11
times faster than CPU training and about a third of the energy
consumption than GPU training using 8-bit integers for training
VGG-like networks on the CIFAR dataset for the Maxeler MAX5
platform.

I . I N T R O D U C T I O N

Deep neural networks (DNNs) have achieved remarkable

results on various demanding applications such as image

classification [1] and object detection [2]. In resource-limited

settings, the development of real-time and low-power hardware

accelerators is especially critical, and hence various hardware

devices such as FPGAs and ASICs have been utilized for

implementing embedded DNN applications. In particular,

FPGAs are gaining popularity because of their capability to

provide superior energy efficiency and low-latency processing

while supporting high reconfigurability, making them suitable

for accelerating rapidly evolving DNN algorithms [3].

However, most of the existing FPGA accelerators are de-

signed for inference with low-precision DNN models, which

are pre-trained on high-precision models (e.g. 32/64-bit floating

point models). Since DNNs employ different precision formats

for training and inference, they often need further fine-tuning

to achieve acceptable accuracy. This makes them diffcult to

support, for example, systems requiring continual learning [4].

Various low-precision training techniques, such as mixed preci-

sion [5], fixed-point [6, 7] and ternary [8] weight parameters,

have been proposed to reduce the overhead associated with

fine-tuning to create low-precision models.

In this paper, we explore the benefits and drawbacks of

employing FPGA and GPU platforms for low-precision training.

In particular, we develop an FPGA framework that supports

1This work is done when Cheng Luo was visitting Imperial College London

DNN training on a single FPGA with a low-precision number

system using 8-bit integer (int8). Our objective is to determine

if the fine-grained customizability and flexibility offered by

FPGAs can be exploited to outperform state-of-the-art GPUs in

low precision training in terms of speed and power consumption.

To meet this objective, we need to address the following

challenges.

1) Compared to DNN inference, the training process requires

more memory and computational resources of FPGAs due

to the additional computations and different operations

performed in backward propagation [9]. This leads to

differences in requirements for hardware architecture.

2) FPGA implementations of DNN inference usually ex-

ploits image-level and layer-level parallelism to reduce

latency [10]. However, training usually proceeds with

batches of training examples in parallel. Effective ex-

ploitation of such batch-level parallelism can be the key

to significant acceleration.

To solve these problems, this paper proposes a novel FPGA

architecture for DNN training by introducing a batch-oriented

data pattern which we refer to as channel-height-width-batch

(CHWB) pattern. The CHWB pattern allocates training samples

of different batches at adjacent memory addresses, which

enables parallel data transfer and processing to be achieved

within one cycle. Our architecture can support the entire training

process inside a single FPGA and accelerate it with batch-level

parallelism. A thorough exploration of the design space with

different levels of parallelism and their corresponding architec-

tures with respect to resource consumption and performance

is also presented.

Moreover, we propose DarkFPGA, an FPGA-based deep

learning framework with a dataflow architecture. Our approach

is built on Darknet framework [11], an open-source neural

network framework written in C and CUDA, with FPGA

implementation using MaxJ [12]. To the best of our knowledge,

it is the first training framework on FPGA supporting low-

precision DNN training.

In summary, this paper makes the following contributions.

• A novel accelerator for a complete DNN training pro-

cess. A dataflow architecture that explores batch-level

parallelism for efficient FPGA acceleration of DNN
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Figure 1. A comparison of the convolutional layer for inference and training.

training is developed, providing a power-efficient and high-

performance solution for efficient training.

• A deep learning framework for low-precision training

and inference on FPGAs called DarkFPGA. We perform

extensive performance evaluations for our framework on

the MAX5 platform for the training of several well-known

networks in ternary weights.

• An automatic optimization tool for the framework to ex-

plore the design space to determine the optimal parameters

for a given network specification.

I I . B A C K G R O U N D

This section provides an overview of DNN training, empha-

sizing its difference from inference, and then presents state-of-

the-art FPGA implementations of DNN acceleration.

A. Training versus Inference

The major difference between training and inference is that

the training process requires an additional process of backward

propagation to compute the gradients of the cost function,

subsequently using them to update the model weights so that

the model can show desirable behavior. Backward propagation

makes training computationally expensive and requires different

operations in comparison to inference.

Figure 1 shows the operations needed for the inference

and training of a convolutional layer. For a layer l, the

inference process consists of forward propagation, which simply

convolves the input activations (Al) with the weights (Wl)

to generate the output activations for the next layer (Al+1).

On the contrary, the training process first performs forward

propagation as during inference to compute the errors using the

loss function. Thereafter, backward propagation is performed

to convolve the errors (El+1) from the last layer with the

current weights (Wl) to calculate the errors to be propagated

to the previous layer (El), which is also used to compute the

gradients (Gl) with respect to the loss function. The gradients

are used to update the current weights according to the chosen

optimization algorithm. Algorithm 1 presents the pseudocode

for the training of a convolutional layer to provide a precise

description for the process, The meaning of the notations can

Algorithm 1: Pseudocode for Training Convolutional layers

1 Forward:
2 for b = 1 to B do
3 for c = 1 to C ×K do
4 for f = 1 to F do
5 for im = 1 to H ∗W do
6 Al+1[b][f ][im] += Wl[f ][c] ∗Al[b][c][im]
7 Backward:
8 for b = 1 to B do
9 for c = 1 to C ×K do

10 for f = 1 to F do
11 for im = 1 to H ∗W do
12 El[b][c][im] += Wl[f ][c] ∗ El+1[b][f ][im]
13 Gradient Generation:
14 for b = 1 to B do
15 for c = 1 to C ×K do
16 for f = 1 to F do
17 for im = 1 to H ∗W do
18 Gl[b][f ][c] += Al[b][c][im] ∗ El+1[b][f ][im]

be found in Table I, where the same set of notation is also

followed in the rest of this paper.

Therefore, the required computations for training is almost

three times of that for inference as the latter requires only exe-

cuting the Forward loop. In addition, it requires significantly

more memory space for storing errors and gradients.

B. Related Work

Most FPGA implementation efforts mainly focus on the

acceleration of DNN inference. One notable work [10] ex-

ploits image-level and layer-level parallelism extensively to

achieve state-of-the-art speedup for inference. For training

[13, 14, 15, 16], Geng et al. [13] explores layer-level parallelism

for training a model on multiple FPGAs in a pipelined manner.

Moreover, Li et al. [14] studies reconfigurable communication

patterns when training on a multi-FPGA platform. However,

the performance will be undesirable if we naively deploy the

inference architecture naively for training without considering

the enormous number of training examples and the extra

backward operations required for training [17].

Some FPGA implementations [16, 18] attempt to tackle

the problem by distributing the computations across a het-

erogeneous FPGA-CPU system. Moss et al. [18] proposes

to perform the core GEMM operations on FPGAs and leave

CPU for the remaining jobs. However, this solution requires

effective load balancing support for heterogeneous devices,

since unpredictable communication cost between CPUs and

FPGAs can make the communication bound operations a new

bottleneck of the design. Based on our profiling in Section VI,

the operations executed on CPU require more computational

time than FPGA acceleration of matrix multiplication.

With the objective of speeding up training, this paper studies

the acceleration of entire training on a single FPGA, explores

the parallelism in training batches, and provides an architecture

suitable for bidirectional propagation. To the best of our

knowledge, our work is the first low-precision DNN training

framework accelerated on a single FPGA platform. Compared
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TA B L E I
PA R A M E T E R S F O R F P G A I M P L E M E N TAT I O N S O F T R A I N I N G .

Parameter Description
B the batch size of training examples
C the size of channel
F the size of filter
H the height of frames
W the width of frames
K the kernel size of weights

to other frameworks, our proposed customizable FPGA design

achieves 11 times speedup over a CPU-based implementation

and is about 3 times more energy efficient than a GPU-based

implementation.

I I I . F P G A A C C E L E R AT O R S F O R D N N T R A I N I N G

In this section, we present the use of the CHWB pattern

to explore the batch-level parallelism for training, and show

how we can apply this idea to develop the architecture of our

training accelerator.

A. CHWB Pattern

For training, the activations, weights, errors and gradients are

too large to be stored completely in the on-chip memory on an

FPGA. Therefore, only a portion of data can be cached on-chip

while the remaining is kept off-chip. As the bandwidth between

the on-chip and off-chip memory is limited, it is necessary to

explore an optimal data access pattern to efficiently utilize the

bandwidth, particularly for training.

In this work, the most widely-used data pattern for DNN

training on GPUs is referred as Batch-Channel-Height-Width

(BCHW), which depicts the order of data dimensions in the

memory space [19], where the elements along the lowest

dimension W are stored consecutively. Figure 2(a) shows an

example of data represented in the BCHW pattern along with its

corresponding data layout in the DRAM in Figure 2(c). In this

case, it is difficult to fetch the elements from different batches

in burst mode since they are usually not stored consecutively

in memory, which under-utilize the bandwidth when exploring

batch-level parallelism.

We develop the Channel-Height-Width-Batch (CHWB) pat-

tern for FPGAs to explore batch-level parallelism without

compromising bandwidth utilization. As shown in Figure 2(b),

the elements from adjacent batches are allocated consecutively,

which allows the memory interface to simultaneously read

multiple training examples. As a result, our accelerator needs

only a single DRAM burst access to acquire all necessary input

data which greatly improves bandwidth utilization.

B. Tiling

Tiling is a common optimization technique to improve

memory bandwidth and computing resource utilization for

DNN acceleration on resource-limited FPGA devices. The

strategy partitions large input frames into smaller tiles of data

so that each tile can be fitted into the on-chip memory of

an FPGA. It is particularly important for training as some

resource-intensive tasks like matrix transpose are needed during

backward propagation.
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Figure 2. Comparison of two sequences of BCHW and CHWB.

For the CHWB pattern, we consider tiling along four data

dimensions: batch tile TB , channel tile TC , filter tile TF and

image tile TI , which correspond to the size of a tile along

the dimension. Consider the input matrix transpose between

the image dimension and channel dimension, as well as the

weight matrix transpose between the channel dimension and

filter dimension during training [20], we set the image tile

TI equal to channel tile TC and filter tile TF . Therefore, we

explore two levels of parallelism in our design: the batch-level

parallelism PB and the image-level parallelism PI , which are

controlled by the tiling parameters TB and TI respectively.

The tiling parameters must be chosen carefully in order to

maximize the performance of the design. A larger tile size

reduces the number of data transfers and increases parallelism,

but it requires more on-chip memory for storing tiles. In Section

IV. we will explore the optimization of the tile sizes.

C. System Overview

Figure 4 presents an overview of our FPGA-based training

accelerator, which consists of a computation kernel, a global

controller and a DDR controller for off-chip memory transfer.

The computational kernel has a batch splitter, a set of processing

elements (PEs) and a batch merger. When a stream of training

batches is arriving at the kernel from the DDR controller, the

splitter divides the stream into multiple parallel streams via

shift registers to facilitate batch-level parallelism. The streams

are then processed by the PEs in parallel. Each PE involves

a general matrix multiplication kernel (GEMM kernel) or an

auxiliary kernel to perform training operations. After processing,

the streams are merged into a single output stream, then it is sent

to the DDR controller. The global controller is responsible for

controlling the behaviour of each computation kernel, including

assigning memory addresses for loading/writing data through

the DDR controller, enabling special operations required by

particular layers, and controlling the direction of the data flow.

The CPU sets the network configuration in the global controller

before starting training.

D. Unified GEMM Kernel

Figure 5 shows the architecture of the GEMM kernel. The

kernel provides a unified datapath to support the convolutional
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Figure 5. Hardware architecture of GEMM kernel.

and fully-connected computations of the forward and backward

propagation, as well as the gradient generation, which are the

most computationally intensive tasks in the accelerator. This

unified approach is adopted because matrix multiplication is

the common operation for these computations and only the

input/output matrix to/from the kernel needs to be changed.

Therefore, we can avoid time-consuming dynamic reconfigu-

ration [16] or using separate kernels for different operations

[13].

Before any computation, the data streams are stored in the

input buffers, which are organized as a double buffer in order

to overlap the data transfer with the computation. When the

(i+1)th tile flows from the batch splitter to the input buffer, the

ith tile can be sent to the GEMM kernel for the computation.

Note that for the weight stream, as the weight data are shared

by different tiles across the same batch, the weight stream

bypasses the batch splitter and enters the input buffers directly.

The GEMM kernel fetches data from the input buffers and

performs tiled matrix multiplication. The intermediate values

during each iteration are stored in the output buffers and are

used for the next iteration. The final results are post-processed

by the batch merger for forward/backward propagation and

gradient computation, then transferred back to the DRAM. The

details of the tiled matrix multiplication for the convolutional

and fully-connected layers are shown in Algorithm 2.

In order to support different modes of operations in a single

datapath, the global controller dynamically re-configures the

buffers and data flow to set up the datapath to operate differently.

The input buffer can be configured to perform on-the-fly matrix

transposition for the computation of backward propagation.

Furthermore, the global controller switches the multiplexer to

feed the correct input streams to the processing elements and

the demultiplexer to direct the output stream to the appropriate

postprocessing unit.

E. Auxiliary Kernels

The auxiliary kernels are designed for accelerating supple-

mentary operations with batch-level parallelism. The operations

include im2col, col2im, max-pooling, reshape, weight updating,
summation and nonlinear functions. as well as their backward

counterparts (if necessary). Unlike the operations in the

convolutional or fully-connected layers, these operations have

Algorithm 2: Pseudocode of Tiled Matrix Multiplication

for Convolutional and Fully-connected Layers

1 Consider input frames, output frames and error frames as
3-dimensions TB × TI × TI tiled blocks, Weight matrix and
gradient matrix is also transferred into TI × TI tiled blocks.

2 Convolutional layer:
3 for f = 1 to F/TI do
4 for im = 1 to (H ∗W )/TI do
5 for b = 1 to B/TB do
6 for c = 1 to C ×K/TI do
7 Al+1(b)(f, im)c = Wl(f, c)×Al(b)(c, im)
8 Al+1(b)(f, im) += Al+1(b)(f, im)c
9 Output Al+1(b)(f, im)

10 Convolutional gradients generations:
11 for f = 1 to F/TI do
12 for c = 1 to C ×K/TI do
13 for b = 1 to B/TB do
14 for im = 1 to (H ∗W )/TI do
15 Gl(b)(f, c)im = El+1(b)(f, im)×Al(b)(c, im)T

16 Gl(b)(f, c) += Gl(b)(f, c)im
17 Output Gl(b)(f, c)
18 Fully-connected layer:
19 for f = 1 to F/TI do
20 for b = 1 to B/TB do
21 for c = 1 to C/TI do
22 Al+1(b)(f)c = Al(b)(c)×Wl(f, c)

T

23 Al+1(b)(f) += Al+1(b)(f)c
24 Output Al+1(b)(f)

no learnable weights and require only a small amount of

computation.

The kernels consist of various types of separate processing

units to support the operations, receiving the parallel data

streams from the batch splitter and send them to the specific

units. These units store the input stream in a line buffer, and

a window captures part of the pixels in the buffer to output,

compare or accumulate. Finally, the output streams flow through

the batch merger as a batch stream for the DRAM.

I V. D E S I G N S PA C E E X P L O R AT I O N

This section presents the design space exploration for

optimizing the proposed DNN training accelerator. The per-

formance of FPGA implementations is affected by factors

including batch tiling size TB , image tiling size TI and

bitwidth L for training. The bitwidth is pre-defined while

the two tiling sizes are decided by our optimization model.
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To maximize performance, we develop bandwidth modelling,

resource modelling and performance modelling to enable design

space exploration.

A. Bandwidth Modeling

There are three streams flowing from the DRAM to the

GEMM kernels. In each cycle of convolution, one weight is read

from the weight stream while TB input values are read from

input frame stream. The results are accumulated in processing

elements before N iterations of the convolution are completed.

When it comes to the fully-connected layer, additional TI

weights are needed which increase the bandwidth requirement.

Therefore, the theoretical maximum bandwidth requirements

for computing the convolutional and fully-connected layers

with frequency Fre are:

BWCONV = (TB × LI + TB × TI/N × LO + LW )× Fre

BWFC = (TB × LI + TB × TI/N × LO + TI × LW )× Fre

where LI is the bitwidth of the input activations, LO is the

bitwidth of the output activations and LW is the bitwidth of

the weights.

For the auxiliary kernel, the bandwidth requirements are

relatively large compared to the small amount of computations

performed. In general, it may take one or two input values to

generate one or two output values, which handles up to 4 values

in each cycle. As these operations benefit from batch-level

parallelism, the bandwidth requirements have also multiplied

TB times:

BWauxiliary = (2× TB × LI + 2× TB × LO)× Fre

B. Resource Modeling

There are three kinds of hardware resources in FPGAs: LUT,

Block RAM and DSP, which form the resource constraints

of our design space. We present equations to estimate the

utilization for each of them.

First, the resource consumption of the global controller and

the DRAM controller is independent of the design parameters.

We therefore define them as LUTfix, DSPfix, BRAMfix.

Second, the resource consumption of the computational

kernels is affected significantly by different design parameters.

For example, BRAMs are utilized in the input buffers of GEMM

kernels and their usage is given by:

BRAM =
4× TB × T 2

I × (2× LI) + 4× T 2
I × LW

BRAMSIZE

where the constants 4 are contributed by the double buffers

for both the normal matrix and the transposed matrix.

The multiply-and-add units utilize the DSPs as

DSP = TB × TI ×Dmul + TB ×Al ×Dadd + TB ×Dadd

where Dmul and Dadd are the DSP usage of the multiplier and

adder affected by the bitwidth of activations and weights. Al

is the level of tree adder in the computational kernel, which

equals to log2(TI) .

Finally, an approximate regression model is proposed to

estimate the consumption of LUT as it is difficult to predict

statically. Its usage is given by:

LUT = TB × TI × β + TB × δ

where β, δ are linear function parameters pre-trained based on

a specific platform.

C. Performance Modeling

In each clock cycle, a GEMM kernel can accomplish TI

matrix multiplication operations. Therefore for our batch-

parallel module with TB kernels, the total execution time under

frequency Fre is:

TCONV =
B × C ×K × F ×H ×W

TI × TB × Fre

TFC =
B × C × F

TI × TB × Fre

However, the above formulae are only valid for the sequential

case. In fact, in order to support parallel computing, tiled

matrices are filled with zero values. Therefore, the actual

computational time should be:

TCONV =
�B�TB × �C ×K�TI × �F �TI × �H ×W �TI

TB × TI × Fre

TFC =
�B�TB × �C�TI × �F �TI

TB × TI × Fre

�X�T = ceil(X/T ) ∗ T
where function �X�T means mapping X to the least multiple

of T greater than or equal to X , which indicates that these

formulae are identical only when tiling sizes are set as factors

of the corresponding parameters.

Also, in each cycle of the auxiliary kernel, frames batches

can be handled simultaneously and the processing time is:

Tauxiliary =
�B�TB × C ×H ×W

TB × Fre

For our dataflow architecture, the transmission time of the

computational kernels is overlapped by the computation time. In

this manner, the communication time should meet the bandwidth

requirement.

By evaluating the performance of every combination based on

the above models, we can build a single-objective optimization

tool for minimal execution time:

Minimize T ime = T ′
CONV + T ′

FC + T ′
auxiliary

where

⎧⎪⎪⎨
⎪⎪⎩

LUT + LUTfix ≤ LUTlimit

BRAM +BRAMfix ≤ BRAMlimit

DSP +DSPfix ≤ DSPlimit

BW ≤ BWlimit

where LUTlimit , BRAMlimit , DSPlimit , BWlimit are

limited FPGA resources, and T ′
CONV + T ′

FC + T ′
auxiliary

are the expected computation time for a specific network

description.
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V. T H E D A R K F P G A F R A M E W O R K

For our proposed dataflow architecture, we present Dark-

FPGA, a hardware/software co-designed FPGA framework

for effective training. Overall, the key features of DarkFPGA

include:

1) Scalable accelerator architecture. We develop a multi-level

parallelism scalable FPGA design that can easily be scaled

up to larger devices with more resources.

2) Software definable hardware accelerator. Our accelerator

can be configured by software to support various DNN

networks and different parallel levels through deploying

different FPGA bitstreams.

3) A tool for optimizing hardware design. Our tool accepts

a set of user constraints including network description

and hardware resource description to produce optimised

performance.

We automate the process of exploring design parameters for

the DarkFPGA framework. The users only need to provide a

network description and a training dataset, then it will produce

the most suitable parameters for the accelerator for the given

network. DarkFPGA hardware accelerates the entire training

process with a unified module on FPGA. Our tool, illustrated

in Figure 5, has six stages:

1) Parse network description. The tool predicts optimized

parameter values and selects a suitable FPGA bitstream to

configure hardware.

2) Allocate device DRAM space for the activations, weights,

errors and gradients.

3) Initialize weights and transfer them to DRAM. Note that

the weights are transferred during initialisation and are

updated subsequently on FPGA.

4) Fetch and transfer the training samples to DRAM. Data

reorganization is used to convert training samples into the

CHWB sequence.

5) Launch FPGA acceleration. When the FPGA is engaged

in entire training, no computational operations are required

by the host CPU.

6) Train neural network iteratively. Transfer loss and accuracy

information back to the host for each complete training

batch.

TA B L E I I
T H E N E T W O R K A R C H I T E C T U R E I N E X P E R I M E N T

Layer B C F H × W K

CONV1 128 3 128 32 × 32 3 × 3

CONV2 128 128 128 32 × 32 3 × 3

MAXPOOLING 128 128 128 16 × 16 2 × 2

CONV3 128 128 256 16 × 16 3 × 3

CONV4 128 256 256 16 × 16 3 × 3

MAXPOOLING 128 256 256 8 × 8 2 × 2

CONV5 128 256 512 8 × 8 3 × 3

CONV6 128 512 512 8 × 8 3 × 3

MAXPOOLING 128 512 512 4 × 4 2 × 2

FC 128 8096 1024 - -

SSE 128 10 10 - -

V I . E X P E R I M E N TA L R E S U LT

To find the performance and limitation of the DarkFPGA

framework, we evaluate our framework on the Maxeler MAX5

platform, which consists of a Xilinx ultrascale+ VU9P FPGA.

Three 16GB DDR4 DIMMs are installed on the platform as

off-chip memory with a maximum bandwidth of 63.9GB/s. Our

hardware accelerator works at 200 MHz. Maxcompiler 2018.2

and Vivado 2017.2 are used for synthesis and implementation.

The VGG-like network [21] trained on the Cifar10 [22] dataset

is evaluated in the following training experiments, which

achieves 93% Top-5 accuracy on our DarkFPGA system.

Shuang et. al [8] shows that this network can be trained with

8-bit integers and the sum-square-error loss function (SSE).

A. Exploration of DarkFPGA performance

Based on the discussions in Section III and Section IV, the

performance of DarkFPGA for a specific network description

is determined by the tile sizes (TB , TI ). We analyze the choice

of tile sizes for the network configuration shown in Table II.

The batch tile TB is crucial for maximising performance

and is bounded by the training batch size. Consider that the

commonly used batch size is 128, we select the three factors

of 128 as (32,64,128) to set batch tile size TB for exploration.

The image tile TI is mainly related to the computational times

TCONV and TFC , which depends on the network parameters

C, F , H and W . Based on our observation from Table II,

we choose (16, 32, 64) for TI to explore the design space.

Additionally, the maximal supported design parameters in our

framework (TB , TI) = (128, 48) are also evaluated.

Figure 6 shows the corresponding performance and resource

consumption under different design parameters (TB , TI ). As

shown in Figure 6(a, b), the design space (TB , TI ) changes

from (128,48) to (32,16) as the performance decreases. We

find that the most critical factors that affect the performance

are the multiplication of two tiling size(TB × TI ) and batch-

level parallelism (TB). The reason is that, according to

our performance model, the computational time for matrix

multiplication operations are accelerated by (TB × TI ) times,

while the auxiliary operations are accelerated by TB times.
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(a) Computational time of training (b) Performance of training (c) Resource consumption

Figure 6. Performance and Resource consumption experiments under different design space

(a) Performance of CPU training (b) Performance of CPU+FPGA training (c) Performance of FPGA training

Figure 7. Performance comparisons between homogeneous system and heterogeneous system

As the matrix multiplication operations dominate the training

process, the number of multiplications (TB×TI ) determines the

overall performance. Also at the same level of TB × TI , larger

batch-level parallelism TB leads to slightly better performance.

Finally, Figure 6(c) shows the relation between DSP utilization

and performance, indicating that our design space is bounded

by DSP resources.

Therefore, we can customize a DarkFPGA design to deter-

mine the optimal implementation of the training accelerator

when TB = 128, TI = 48.

B. Heterogeneous versus Homogeneous Computing

Some of the existing FPGA accelerators rely on het-

erogeneous computing to handle auxiliary operations on

training and inference [18, 23]. To quantitatively compare

the performance discrepancies between heterogeneous and

homogeneous computing, our DarkFPGA framework is revised

to implement heterogeneous computation across an FPGA-CPU

heterogeneous system, which is achieved by delivering auxiliary

operations to CPU and removing the auxiliary kernels.

In this experiment, the tiling size is set to (TB = 128, TI =
48). The result is presented in Figure 7 which shows that

homogeneous computing can achieve significantly higher perfor-

mance. Based on the comparison between CPU homogeneous

system and CPU+FPGA heterogeneous system (Figure 7(a)

versus Figure 7(b)), heterogeneous computing can effectively

improve the performance of GEMM, but other parts of the

training would become a new computing bottleneck. This

problem can be addressed with a homogeneous FPGA system,

accelerating everything by batch-parallelism to achieve over

10 times speedup (Figure 7(b) versus Figure 7(c)). This clearly

showcases the benefits of implementing the entire training

process on the FPGA.

Note that using multi-threaded or high-performance CPU can

significantly improve heterogeneous computing performance.

However their high power consumption brings a tough challenge

for embedded DNN applications.

C. Performance Comparison with GPU and CPU

To compare the performance of DarkFPGA with other plat-

forms, the final implementation is customized for performance

with int8. All software results are running on an Intel Xeon

X5690 CPU (6 cores, 3.47GHz) and an NVIDIA GeForce

GTX 1080 Ti GPU. After finishing the same number of

batches, all platforms achieve similar accuracies. Unfortunately,

GeForce GTX 1080 Ti does not have native int8 support, so

the performance of GPU low-precision training is evaluated

by limiting the range of float32 number system. Comparison

with GPUs supporting int8 is planned for future work.

Table IV shows the performance and power consumption

on different platforms. DarkFPGA achieves over 200 times

speedup over a CPU-based implementation of Darknet and is

2.5 times slower than a GPU-based implementation of Darknet

on overall performance. Since we use a homogeneous FPGA

platform, we compare the power consumption of FPGA and

GPU accelerators. By multiplying time and power consumption,

we can see that our FPGA-based design is 6.5 times more

energy efficient than GPU implementation of Darknet.

Note that Darknet is a lightweight neural network framework,

which allows us to develop FPGA training framework easily

but also limits the overall performance of GPU and CPU.

We therefore evaluate the performance of int8 training on

TensorFlow [24] using multi-threaded acceleration for CPU

51

Authorized licensed use limited to: University of Edinburgh. Downloaded on July 13,2023 at 20:05:38 UTC from IEEE Xplore.  Restrictions apply. 



and cuDNN [25] acceleration for GPU, as shown in brackets.

It shows that DarkFPGA achieves 11 times speed up over

CPU-based implementation and 3 times more energy efficient

than GPU implementation on TensorFlow.

Finally, the area cost of the design targeting the MAX5

platform is shown in Table III. This demonstrates, also based

on our design space exploration, that the performance of FPGA-

based training deep neural network is limited by the number

of DSPs available on the chip. If the parallelism level (TB , TI)
increases to (128, 128), FPGA may achieve similar performance

as GPU, which may require over 16500 on-chip DSPs. This

requirement is likely to be achieved by a single Intel Stratix

10 FPGA with setting (TB = 128, TI = 128), or extending

batch-level parallelism to 4 Xilinx ultrascale+ VU9P FPGAs

each with TB = 32, TI = 128.

TA B L E I I I
R E S O U R C E U T I L I Z AT I O N O F T H E I N T 8 D A R K F P G A

A C C E L E R AT O R O N M A X 5 P L AT F O R M

LUT DSP BRAM18 URAM

Available 1182240 6840 4320 960

Utilization 678716 6241 1232 131

Percentage 57.41% 91.24% 28.52% 13.65%

V I I . C O N C L U S I O N

This work proposes DarkFPGA, a novel FPGA framework

for efficient training of deep neural networks. The DarkFPGA

accelerator explores batch-level parallelism, which provides

efficient training acceleration for both forward and backward

propagation on a homogeneous FPGA system. Optimization

strategies such as batch-focused data sequence CHWB and

tiling strategies are employed to improve overall performance.

Furthermore, an optimization tool is developed for determining

the optimal design parameters for a specific network description.

Future work includes applying DarkFPGA to multi-FPGA

clusters, exploring mixed precision and binarised training,

and supporting cutting-edge network functions like Group

Normalization and Depthwise Convolution.
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