
This paper is included in the Proceedings of the
16th USENIX Symposium on Operating Systems

Design and Implementation.
July 11–13, 2022 • Carlsbad, CA, USA

978-1-939133-28-1

Open access to the Proceedings of the
16th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by

Ekko: A Large-Scale Deep Learning
Recommender System with Low-Latency

Model Update
Chijun Sima, Tencent; Yao Fu and Man-Kit Sit, The University of Edinburgh;

Liyi Guo, Xuri Gong, Feng Lin, Junyu Wu, Yongsheng Li, and Haidong Rong,
Tencent; Pierre-Louis Aublin, IIJ research laboratory;

Luo Mai, The University of Edinburgh
https://www.usenix.org/conference/osdi22/presentation/sima

Ekko: A Large-Scale Deep Learning Recommender System
with Low-Latency Model Update

Chijun Sima∗

Tencent
Yao Fu∗

The University of Edinburgh
Man-Kit Sit

The University of Edinburgh
Liyi Guo
Tencent

Xuri Gong
Tencent

Feng Lin
Tencent

Junyu Wu
Tencent

Yongsheng Li
Tencent

Haidong Rong
Tencent

Pierre-Louis Aublin
IIJ research laboratory

Luo Mai
The University of Edinburgh

Abstract
Deep Learning Recommender Systems (DLRSs) need to up-
date models at low latency, thus promptly serving new users
and content. Existing DLRSs, however, fail to do so. They
train/validate models offline and broadcast entire models to
global inference clusters. They thus incur significant model
update latency (e.g. dozens of minutes), which adversely af-
fects Service-Level Objectives (SLOs).

This paper describes Ekko, a novel DLRS that enables
low-latency model updates. Its design idea is to allow model
updates to be immediately disseminated to all inference clus-
ters, thus bypassing long-latency model checkpoint, valida-
tion and broadcast. To realise this idea, we first design an
efficient peer-to-peer model update dissemination algorithm.
This algorithm exploits the sparsity and temporal locality in
updating DLRS models to improve the throughput and la-
tency of updating models. Further, Ekko has a model update
scheduler that can prioritise, over busy networks, the sending
of model updates that can largely affect SLOs. Finally, Ekko
has an inference model state manager which monitors the
SLOs of inference models and rollbacks the models if SLO-
detrimental biased updates are detected. Evaluation results
show that Ekko is orders of magnitude faster than state-of-
the-art DLRS systems. Ekko has been deployed in production
for more than one year, serves over a billion users daily and
reduces the model update latency compared to state-of-the-art
systems from dozens of minutes to 2.4 seconds.

1 Introduction

Deep Learning Recommender Systems (DLRSs) are a key
infrastructure in large technology organisations such as
Meta [54], ByteDance [23], Google [15] and NVIDIA [56].
A DLRS often contains a large group of parameter servers
that host numerous Machine Learning (ML) models (i.e. em-
bedding tables [10, 26, 54] and deep neural networks [18]).
The parameter servers are replicated in geo-distributed data

*Chijun and Yao are co-primary authors.

centres for fault-tolerance and low-latency communication
with clients. Each data centre has a group of inference servers
which pull models from local parameter servers and serve
clients with recommendation results. To ensure new users and
content can be served promptly, a DLRS must update ML
models continuously: it first uses training servers to collect
new training data and compute model gradients. It then uses
parameter servers to disseminate model updates to model
replicas, usually through a Wide-Area Network (WAN).

Large-scale DLRSs need to serve billions of users [15,
23, 54] and they must achieve latency-related Service-Level
Objectives (SLOs) [49], e.g. the latency of making a newly
created content available to users. To best achieve SLOs, the
operators of DLRSs have emerging requirements for achiev-
ing low latency in updating models. There are several reasons
for this: (i) recent DLRS applications (e.g. YouTube [24]
or TikTok [8]) have enabled users to create massive short
videos, articles and images. All these contents need to be
made available for clients as soon as possible, usually in min-
utes if not seconds; (ii) data protection laws (e.g. GDPR [60])
allow DLRS users to become anonymous. The behaviours of
anonymous users need to be learnt online; (iii) numerous on-
line ML models (e.g. reinforcement learning [74]) have been
adopted in production to improve recommendation quality.
These models must be continuously updated online to achieve
the best possible performance.

Unfortunately, achieving low-latency model updates is ex-
tremely difficult in existing DLRSs. Existing systems such
as Merlin [56], TFRA [66], Check-N-Run [21] and Big-
Graph [39] follow an offline approach to updating models:
after having collected new training data, these systems com-
pute gradients for models offline, validate model checkpoints,
and broadcast the checkpoints to all data centres. Such a
model update process can take minutes and even hours [21].
An alternative approach is to use WAN-optimised ML sys-
tems [28] or federated learning systems [37]. These systems
update replicated models using locally collected data and
lazily synchronise replicas. The lazy synchronisation, how-
ever, introduces a non-trivial level of asynchrony, which often

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 821

adversely affects the achievement of SLOs [28, 42].
We want to explore a DLRS design that can achieve low-

latency model updates without compromising SLOs. Our key
idea is to allow training servers to update models (using gra-
dients) online and immediately disseminate model updates
to all inference clusters. This design allows us to bypass
long-latency update steps, including offline training, model
checkpoint, validation and broadcast, thereby reducing model
update latency. To make this design feasible, we need to ad-
dress several challenges: (i) how to efficiently disseminate
massive model updates over WANs which have limited band-
widths and heterogeneous network paths [28]; (ii) how to
protect SLOs from network congestion that can delay critical
updates; and (iii) how to protect SLOs from biased model
updates that are detrimental to model accuracy.

This paper introduces Ekko, a novel large-scale DLRS that
updates globally replicated models at low latency. The design
of Ekko makes several key contributions:
(1) Efficient peer-to-peer model updates dissemination.
Existing parameter servers often adopt primary-backup data
replication protocols [11, 41, 67] to realise model updates.
With massive model updates, however, primary-backup pro-
tocols exhibit insufficient scalability due to long update la-
tency [67] and leader bottlenecks [2].

To address these issues, we explore how to enable Peer-
to-Peer (P2P) [20] model update dissemination. We design
an efficient log-less state-based synchronisation algorithm
for geo-distributed DLRSs (see §4). This algorithm is effec-
tive in DLRSs because model updates often hit hot parame-
ters [21], and it only transfers the latest version of a model
parameter (i.e. state). Ekko must allow parameter servers to
efficiently discover the differences of model states in a P2P
manner. To this end, we design (i) model update caches that al-
low parameter servers to efficiently track and compare model
states, (ii) shard versions that can significantly reduce network
bandwidth consumption when comparing model states, and
(iii) WAN-optimised dissemination topologies that allow pa-
rameter servers to prioritise bandwidth-affluent intra-DC net-
work paths over bandwidth-limited inter-DC network paths.
(2) SLO protection mechanisms. Ekko allows model updates
to reach inference clusters without offline model validation.
Such a design can make SLOs (particularly those related to the
freshness and quality of recommendation results) vulnerable
to network congestion and biased updates, both possible in
production environments.

To handle network congestion, we design an SLO-aware
model update scheduler (see §5). This scheduler computes
metrics, including the update freshness priority, the update
significance priority and the model priority. These metrics
predict the impact of model updates on the inference SLOs.
The scheduler computes a priority for each model update
online based on these metrics. We integrate the scheduler
into parameter servers without changing the decentralised
architecture of the P2P model update dissemination in Ekko.

Ekko handles biased updates using a novel inference model
state manager. This manager creates a baseline model for
each group of inference models. This baseline model receives
a small amount of user traffic and serves as the ground truth
to the inference model. The manager continuously monitors
the quality-related SLOs for baseline and inference models.
When biased model updates corrupt the state of the inference
model, the manager notifies witness servers to roll back the
model to a healthy state.

We evaluate Ekko using both test-bed and large-scale produc-
tion clusters (see §6). Test-bed experimental results show that
Ekko reduces the model update latency by up to 7× compared
to state-of-the-art parameter servers, namely Adam [11]. We
further run large-scale production experiments with 40 TB
models and over 4,600 servers spread across geo-distributed
regions. Experimental results show that Ekko disseminates
updates in 2.4 seconds while executing 1 billion updates per
second (i.e. 212 GB/s). Ekko only uses 3.0% of the total
network bandwidth for synchronisation, leaving the rest for
training and inference. This second-level latency performance
is orders of magnitude faster than the minute-level latency
(i.e. 5 minutes [69]) achieved by state-of-the-art DLRS infras-
tructures (e.g. TFRA [66] and Check-N-Run [21]).

2 Low-Latency Model Updates in DLRSs

In this section, we introduce DLRSs and their algorithms
for updating models. We then describe their Service-Level
Objectives (SLOs) that can benefit from reducing the latency
of updating models. Finally, we discuss the system challenges
associated with realising low-latency model updates.

2.1 DLRSs and model updates
Most technology organisations adopt DLRSs following a sys-
tem architecture shown in Figure 1. A DLRS often serves
clients distributed across the globe (1). To minimise serving
latency, DLRS models (i.e. embedding tables [10, 26, 54] and
deep neural networks [18]) are geo-replicated in multiple data
centres. When a client’s request arrives, an inference server
pulls the model parameters from local parameter servers and
infers over this model to answer the request.

Data pipelines collect training data (e.g. new content and
user activities) from clients at run-time. The collected data
reach training servers in a data centre (2). The training servers
use optimisers [33] to compute gradients that correct corre-
sponding models. All updated models (usually 100s - 1,000s)
are persisted as checkpoints (3). The checkpoints are first
validated, and only those that can improve SLOs are dissem-
inated to the parameter servers in inference-oriented data
centres over a WAN (4), finishing the model update process.

In practice, the latency of updating a DLRS model com-
prises the time of computing model updates and disseminat-

822 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Training servers

Parameter servers

Checkpoint &
Evaluation

Parameter servers

Inference servers

Parameter servers

Inference servers

Wide area network Model update

Serve global clientsClients Clients

2

3

4

Data centre

1

New data

Figure 1: A typical DLRS architecture.

ing the updates to global data centres. This latency definition
presumes that we have used low-latency message queues,
e.g. Kafka [36], to accelerate the training data ingestion. Re-
cent DLRSs, e.g. NVIDIA Merlin [56] and Meta Check-N-
Run [21], report minute-level and hour-level latencies in up-
dating models. Suppose we want to update a DLRS model
with a large embedding table (often several TB in size). In
this case, it can take tens of minutes to persist this model as
a checkpoint and validate the model. It takes another dozen
minutes to disseminate this model over a WAN (assuming
this WAN provides several Gbps bandwidth [72]).

2.2 Reasons for low-latency model updates
DLRSs need to achieve numerous SLOs (usually related to
the freshness and quality of recommendation results). Take a
short-video recommendation service (e.g. TikTok) as an ex-
ample. The DLRS model accuracy determines this service’s
quality SLOs. The time of making freshly made videos acces-
sible to users decides this service’s freshness SLOs.

In real-world DLRSs, we observe that SLOs often depend
on the latency of finishing model updates, making low-latency
model updates a critical system requirement. There are several
reasons for this:
(1) Massive new content created in a short time. Global
DLRSs, e.g. YouTube [24], TikTok [8] and Instagram [22],
often serve billions of users, and they allow users to create
massive content quickly. The DLRSs need to quickly incor-
porate the created content into recommendation results — by
updating their models at low latency — otherwise affecting
user engagement.
(2) Increasing anonymous users. Data protection laws (e.g.
GDPR [60]) have forbidden many DLRSs from tracking user
activities. As a result, such a DLRS can have anonymous users
yet unknown to the recommendation models, even though
these users have used the same service before. A DLRS thus
must quickly react to the online activities of anonymous users,

thus meeting their recommendation requirements. Such a
quick reaction depends on low-latency model updates.
(3) Increasing online recommendation models. DLRSs
have increasing online ML models, e.g. those using rein-
forcement learning [74] and continual learning [69]. These
models improve recommendation quality. They need to col-
lect training data from online user activities, and they thus
must continuously update model parameters at low latency.

2.3 Our key idea and associated challenges
We want to explore how to achieve low latency in updating
DLRS models. Our observation is that the update latency
is accumulated mainly due to several offline steps: model
training, validation and broadcast. Suppose we bypass these
offline steps and allow updated models to be disseminated
to the inference clusters directly. In that case, we can vastly
reduce the steps for updating models, thus achieving low
latency. To realise such a design, however, we must address
several challenges:
(1) Lack of efficient algorithms for disseminating massive
model updates. A real-world DLRS often has a large number
of models (e.g. usually 100s - 1,000s). It needs to update
many of these models online. These models comprise those
on a multi-stage recommendation pipeline [10, 15] and those
for A/B tests [69]. These models often cost 10s of TB mem-
ory. They have the requirement to complete massive model
updates online (e.g. 100s of GB per second).

Suppose we use conventional data replication protocols, e.g.
chain replication [41] and two-phase commit [11]. These pro-
tocols target generic data replication. They lack mechanisms
to coordinate ML model updates (which may exhibit different
impacts on inference SLOs) over a bandwidth-limited net-
work (i.e. WAN). Furthermore, these conventional protocols
suffer from leader bottlenecks. They also incur long update
latency caused by the heterogeneous WAN paths and network
stragglers. As a result, these protocols are ill-suited to meet
our high-throughput, low-latency requirements. Alternatively,
we could use geo-replication protocols [72]. These protocols,
however, cannot handle the failures of servers in the train-
ing data centres, making them unable to meet our system
availability requirement.

We also considered network-efficient distributed ML sys-
tems, e.g. Gaia [28] and Google Federated [35]. These sys-
tems [7, 28, 35, 37, 46] allow models to be trained indepen-
dently in each data centre, thus improving the throughput and
latency of updating models. They, however, lazily synchronise
their states and therefore incur stale model states [47], which
can adversely affect recommendation quality. As a result, the
loosely synchronised distributed ML systems cannot meet our
model accuracy requirement.
(2) Lack of mechanisms for protecting SLOs. Enabling
online model updates in a DLRS poses challenges to SLOs.
Such a DLRS can have model updates competing for network

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 823

Training servers

Parameter servers

Parameter servers

Inference servers

Parameter servers

Inference servers

Clients Clients

2 SLO-aware model
update scheduler

P2P model update1

P2P model update P2P model update

Model state
manager

3

Figure 2: Ekko architecture overview.

bandwidth, delaying critical updates (e.g. those that signifi-
cantly affect model accuracy or bring new items online). Even
though there are systems that schedule the sending of model
gradients [6], these systems target training clusters. As a re-
sult, they prioritise model updates based on gradients [6, 28]
and lack awareness of how those updates will affect the SLOs
of inference models.

Online model updates can be even detrimental. Since on-
line updates are often computed based on a small batch of
data (collected in a short time window: seconds or minutes),
they often contain noise [34]. When updates become par-
ticularly noisy, they become detrimental to inference SLOs
(i.e. decrease the accuracy of inference models). To handle
this, existing model serving systems, e.g. Clipper [16] and
Clockwork [25], use offline model validation, which aver-
ages model updates accumulated for an extended period (e.g.
hours). Other model serving systems, e.g. Google TFRA [66],
track the SLO metrics of inference models, and they reload
checkpoints when SLOs are deteriorating. Such a design,
however, is challenging to implement in DLRSs. Giant DLRS
models (e.g. recommendation-oriented transformers [18]) are
increasingly common. Reloading these models affect the avail-
ability of services.

3 Ekko System Architecture

This paper introduces Ekko, a novel DLRS system that en-
ables low-latency model updates. In this section, we describe
the system model of Ekko and present an overview that high-
lights the novel components in Ekko.

3.1 System model
Ekko is a geo-distributed DLRS. It updates models in a cen-
tral data centre. It then disseminates updated models to geo-
distributed data centres close to global users (i.e. clients).
Ekko represents models as key-value pairs, and it partitions

the models into shards (e.g. 100,000 in our production envi-
ronment). It stores model shards in key-value stores (named
as a parameter store in Ekko). The parameter stores assign
key-value pairs to shards through hashing. The model size
can change over time since the model often incorporates new
items and feature expiration online [32].

Ekko directs parameter requests to model shards using
software-based routers. The routers designate parameter
servers in the training DC as the primaries for model shards.
They also ensure that the choice of primaries can balance the
workload of parameter requests. The implementation of the
routers follows typical key-value stores and databases [38].
We omit the details of the router implementation in this paper.

In the routers, there are shard managers which can handle
resource overload, fault domains [55] and copyset issues [12].
Different from conventional shard managers, Ekko’s shard
managers realise several DLRS-specific optimisations: (i) To
amortise request processing overhead, Ekko batches concur-
rent inference requests for the same model [16]. Batched
requests, however, can query a large number (e.g. 1000s) of
parameters on different parameter servers, resulting in long-
tail query latency [19]. To prevent long-tail latency, Ekko
limits the number of servers assigned to a model’s shards;
(ii) Ekko supports multiple DLRS applications which require
performance isolation. It maps the shards of different applica-
tions to different servers. Therefore, the spike of requesting
the shards of an application will not affect the shards of other
applications.

3.2 Architecture overview

We highlight the novel designs in Ekko in Figure 2. As we
can see, Ekko enables parameter servers to achieve efficient
peer-to-peer model updates (1) (see §4). The P2P model
update algorithm prevents the central training data centre
from broadcasting updated models. Instead, it uses all net-
work paths inside and across data centres (those solid lines
in the figure), thus achieving high throughput in disseminat-
ing model updates. Without using a central coordinator, each
data centre can independently choose optimised intervals that
synchronise model updates.

Ekko supports concurrent dissemination of massive model
updates. These updates can compete for network resources,
delaying the updates that largely benefit SLOs. To handle this,
Ekko relies on an SLO-aware model update scheduler (2)
(see §5.2). This scheduler predicts how each model update
will affect inference results. The prediction results facilitate
the computation of the priority of each model update. Based
on the priority, Ekko coordinates which model updates to
disseminate first at the training data centre, thus improving
the overall satisfaction of the SLOs on inference servers.

Ekko can protect inference servers from being affected by
detrimental model updates. To achieve this, it has a model
state manager (3) (see §5.3) running in the inference clusters.

824 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Replica 1

Parameter 1
Version

Shard versions of
recently modified
shards Shard knowledge of

potentially updated
shards

All updated
parameters

Shard 1
Shard Version

Shard Knowledge

Parameter Q

Replica 2

Shard M

Update
Cache

Request
recently
modified
shard
versions

……

Figure 3: Ekko P2P model update overview.

This model state manager monitors SLO-related metrics of
inference models. Suppose an inference model shows down-
graded performance (caused by online updates). In that case,
the manager rollbacks the model’s state to a better-performing
one, thus recovering the performance of the inference model.

4 Efficient Peer-to-Peer Model Update

This section introduces the efficient P2P model update mech-
anism in Ekko. To enable P2P model update in parameter
servers, the design of Ekko achieves the following goals:

• Ekko needs to coordinate a large number (e.g. thousands)
of parameter servers (deployed across the globe) to finish
model updates. To avoid stragglers (which can be caused
by slow networks), we design log-less synchronisation
for the parameter servers in Ekko (§4.3).

• As a shared DLRS, Ekko needs to host thousands of
models. These models can generate massive (e.g. billions
per second) updates online. To support this, Ekko enables
parameter servers to efficiently discover model updates
through peers and pull updates without using excessive
computation and network resources (§4.4).

• Ekko needs to support geo-distributed deployments,
which often involve heterogeneous network paths across
WANs and server/network failures. To support this, Ekko
has system designs that improve the throughput/latency
of sending model updates over a WAN and tolerate
server/network failures (§4.5).

In the following, we give an overview of the P2P model
update mechanism and describe its implementation in detail.

4.1 Model update overview
Figure 3 highlights the components and steps involved in a
model update in Ekko. Suppose that we want to synchronise a

shard (denoted by shard 1) between two replicas (denoted by
replica 1 and replica 2). Similar to all other shards, shard 1 has
a (i) shard knowledge which summarises parameter updates,
and (ii) an update cache that tracks recent model updates
based on parameter versions. Each shard also associates a
shard version which tells if this shard potentially has parame-
ters to synchronise. The shard knowledge, update cache and
shard version together accelerate parameter synchronisation
among parameter servers.

To finish a model update, replica 2 requests the recently
modified shard versions from replica 1 (1). Once receiving
the request, replica 1 returns a list of recently modified shard
versions (2). Replica 2 then compares all shard versions of
replica 1 with its local shard versions and then sends related
shard knowledge to replica 1 (3). Finally, replica 1 sends all
updated parameters to replica 2 (4). Following these steps,
Ekko can ensure that model updates are eventually dissemi-
nated to all replicas at low latency (i.e. eventual consistency).

We find eventual consistency acceptable in real-world
DLRSs. Even though DNN replicas may diverge in a small
time window, they often exhibit close (even often identical) in-
ference results [11]. This is because DNNs often use floating-
point numbers to represent model parameters, and therefore,
DNN replicas make close predictions even though there is a
slight difference in the values of their local parameters.

4.2 Parameter versions in DLRSs
To track the state of model parameters, Ekko assigns each
key-value pair (i.e. the storage format of a model parameter)
with a parameter version defined below:

Definition 1 (Parameter Version). A Parameter Version v
is a pair (t, id) that consists of a timestamp t and an id
uniquely identifying a replica. The timestamp t is generated
based on the time range provided by modern physical time
sources [14, 43]. Ekko makes sure t increases monotonically
in each replica and pads the physical timestamp with a counter
to make sure any two updates that originate from a single
replica do not share the same timestamp. We define the total
order of Parameter Versions:

v1 ≥ v2 ⇐⇒ (t1 > t2) | ((t1 = t2)∧ (id1 ≥ id2))

A parameter with a larger Parameter Version supersedes an-
other during conflict resolution [62].

In Ekko, it is worth noting that the timestamp is based
on a real-time clock instead of a logical clock (which is of-
ten used in key-value stores and storage services). We find
such a design effective in distributed DLRSs for a reason: a
DLRS has embedding tables where parameters are sparsely
updated. Suppose there is an embedding’s parameter in a
primary replica and this parameter has a significant update
count, but the primary does not disseminate this parameter

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 825

before it fails. When this primary recovers, the counter can
overwrite the current primary with a small update count. Such
an overwrite can adversely affect recommendation quality
because the overwritten primary can have a newer parame-
ter (updated by recently collected training data), leading to
better recommendation results. Hence a logical counter is not
sufficient to resolve conflicts in distributed DLRSs.

4.3 Log-less parameter synchronisation
Once version numbers have been assigned to parameters,
Ekko needs to decide how to synchronise the different replicas.
We observe that a DLRS often overwrites parameters and only
the last write decides the state of a parameter. We therefore
decide to send the last version of parameters.

Ekko needs to decide the interval of synchronising replicas.
We could use log-based synchronisation algorithms [9, 11]:
these algorithms choose synchronisation intervals so that
model updates can be sent at the rates that do not exceed
the bandwidth on the slowest links in a network. These algo-
rithms, however, cause the under-utilisation of many network
links. More importantly, it results in stragglers which can
significantly increase the latency of synchronisation, making
parameter servers more likely to have stale states when they
recover from failures. Hence, we want to realise log-less pa-
rameter synchronisation in parameter servers so that these
servers can dynamically choose synchronisation intervals
with their peers according to the bandwidth on each link.
Shard knowledge in parameter servers. We propose to use
shard knowledge [50, 51] to realise log-less parameter syn-
chronisation. More formally, in each replica, all its shards
maintain a corresponding shard knowledge. The shard knowl-
edge, implemented using version vectors [58], summarises
the parameter updates they have learnt. Shard data (associ-
ated with the shard knowledge VVshard) reflect the state of an
empty shard applying all historical parameter updates origi-
nating from each replica r, where the update corresponding
parameter version v≤VVshard [r]. Suppose there is an update
for the parameter p to be processed in replica r. To main-
tain shard knowledge, this replica generates a new parameter
version vp = (t, id) and sets VVshard [id] = vp.
Shard synchronisation process. To synchronise a shard,
replica r sends its shard knowledge VVr1 to a selected replica
s. Replica s records its current shard knowledge VVs — that is,
it atomically reads out VVs and selects from its store all param-
eters p whose parameter version vp = (tp, idp) > VVr1 [idp]
— and responds to r with VVs. Then, r atomically applies all
parameter updates based on the response from s, and further
merges VVs with its current shard knowledge VVr2 .

There are several considerations to note in the synchroni-
sation process: (i) When replica r synchronises with replica
s, r could have concurrent synchronisation operations with
another replica (denoted as replica k). These operations can
complete before r finishes processing the response from s. As

a result, VVr2 (which is the result of VVr
⊔

VVk) does not nec-
essarily equal VVr1 . (ii) The synchronisation process omits all
superseded versions of an updated parameter in failure-free
scenarios where the requests for updating a parameter are
always routed to the same primary. We find these failure-free
scenarios common in our production environments.

4.4 Making synchronisation efficient
Ekko must ensure parameter synchronisation have negligible
performance overheads on parameter servers. Otherwise, syn-
chronisation can consume excessive computation and commu-
nication resources, affecting parameter servers’ performance
in serving model inference and training requests. In the fol-
lowing, we discuss how to make parameter synchronisation
efficient through parameter update caches (which reduce com-
putation costs) and shard versions (which reduce communica-
tion costs).

4.4.1 Parameter update caches

Since a shard can have a large number of parameters, naively
iterating all parameters to answer a synchronisation request
incurs substantial computation costs. Even though we could
use an index to accelerate the parameter iteration, maintaining
such an index costs tremendous memory resources, which are
difficult to provision on parameter servers.

We design parameter update caches to reduce the compu-
tation cost of parameter synchronisation. The design of such
caches exploits the sparsity and temporal locality we often
observe in DLRSs [21]. Unlike dense DNN training systems
where the entire models are updated every iteration, a DLRS
updates a subset of its parameters (i.e. sparsity). For example,
in our production DLRSs, 3.08% of its parameters are up-
dated per hour. Further, model updates are often overwriting
certain parameters (i.e. temporal locality) in a time window.
This is because a DLRS often has trendy items and users, and
their parameter updates dominate in a short period.

More specifically, a parameter update cache contains point-
ers to recently updated parameters. It exploits a Dominator
Version Vector (denoted as DVV) to judge whether to hit the
cache when a synchronisation request arrives.
Cache maintenance algorithm. The maintenance of
the cache guarantees two invariants: (i) for all parame-
ters puncached existing in a shard but not in the cache,
DVV [idpuncached] ≥ vpuncached ; (ii) for all cached parameters
pcached , DVV [idpcached]< vpcached .

Algorithm 1 describes the maintenance of the parameter
update cache in Ekko. The maintenance relies on the esti-
mated update propagation time Dprop. Consider the function
of updating the cache: UpdateCache (line 1). tpruneto is a
timestamp that describes DVVproposed – a version vector that
judges whether a parameter should be pruned. For every mod-
ification request, the cache records a pointer to that parameter

826 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Algorithm 1: Update Cache Maintenance using Dprop

1 Function UpdateCache(p):
2 if vp.t ≤ tpruneto then
3 DVV.Merge(vp);
4 else
5 cache.Add(p);
6 end
7 Function PruneCache():
8 tpruneto← max(tpruneto, tnow−Dprop);
9 for p ∈ cache do

10 if vp.t ≤ tpruneto then
11 cache.Erase(p);
12 DVV.Merge(vp);
13 end
14 end

if the parameter version vp = (tp, idp) of the modified param-
eter p is larger than DVVproposed [idp] (line 5). Otherwise, the
cache merges the parameter version with DVV (line 3).

Consider the function of pruning a parameter pointer:
PruneCache (line 7). This function takes Dprop, which es-
sentially allows Ekko to exploit online observations towards
cache hit rates to guide cache pruning operations. Suppose
we want to prune parameter pointers when the cache size has
grown beyond a limit. In that case, the cache first determines
DVV ′proposed , which strictly dominates DVVproposed (line 8). It
then removes parameter pointers dominated by DVV ′proposed
(line 11). Eventually, the cache updates DVV by merging it
with parameter versions of pruned parameters (line 12). By
doing so, Ekko achieves adaptive management of the cache
size, reducing its memory footprint.

Cache hit analysis. We analyse when parameter updates hit
the cache. Suppose replica s receives the synchronisation
request from replica r which holds the shard knowledge VVr.
If VVr dominates DVVs, the request hits the cache and its
subsequent operations (e.g. selecting a parameter) only touch
the parameters in the cache.

Ekko ensures that the use of the update cache does not
affect the eventual consistency property of log-less parameter
synchronisation: the synchronisation process needs to select
out parameters p in s where vp >VVr[idp]. Because the update
cache holds the invariant that DVVs[idpuncached]≥ vpuncached and
VVr dominates DVVs, the process selects out the same set of
parameters as the previous algorithm.

The parameter update caches are particularly effective in
reducing the cost of selecting parameters. According to the
traces of the caches deployed in our production environments,
99.4% of the synchronisation requests can hit the caches,
leading to a 99% reduction in the cost of selecting parameters.

4.4.2 Shard versions

We introduce shard versions to reduce network costs in syn-
chronising replicas. Shard versions capture partial causality
relationships of shard data on replicas, and they are much
smaller than version vectors. We can allow the replicas to
book-keep shard version lists where each list is associated
with a neighbour replica. By doing this, replicas can iden-
tify potentially updated shards by exchanging and comparing
shard version lists. Formally, we define shard versions as:

Definition 2 (Shard Version). A shard version sv = (c, id) is
a pair consisting of a counter c, which is monotonically incre-
mented in each shard of each replica, and an id identifying
the replica that generates this version. sv1 ⪰ sv2 of a same
shard s if and only if id1 = id2 and c1 ≥ c2.

Shard version maintenance. On initialisation, each replica
generates shard versions for its shards. It later generates a
new shard version when a training worker issues a parameter
update. Since each shard has a primary replica, there is a
single replica generating shard versions in normal cases.

Once receiving a synchronisation request, the responder
replica, denoted as s, replies its shard version: svs together
with VVs and updated parameters. Once having this reply, the
requester replica, denoted as r, finishes the following opera-
tions in an atomic manner: it (1) merges its shard knowledge
VVr with the received VVs (The merging result is denoted as
VV ′r), and (2) it updates its shard version sv′r to be svs when
VV ′r =VVs; Otherwise, replica r generates a new shard ver-
sion if VV ′r ̸=VVr. Note that: when VVr equals VVs, to avoid
livelock, Ekko will choose a shard version from s and r fol-
lowing deterministic rules (e.g. choosing the shard version
which exhibits a larger numerical value).

We implement book-keeping techniques [51] which main-
tain the shard version lists associated with different replicas.
By applying both shard versions and book-keeping, Ekko can
effectively reduce synchronisation-oriented network traffic.
For example, in one of our production DLRSs, Ekko filters
out 98% of shards in synchronisation.
Synchronisation with shard versions. We discuss how shard
versions facilitate synchronisation. Ekko maintains the invari-
ant sv1 ⪰ sv2 only if shard knowledge VV1 dominates VV2
for the same shard s. Thus replica r needs to synchronise a
shard with replica s only if svr ⪰̸ svs. Furthermore, consider
different replicas which have comparable shard versions for
the same shard. Ekko prefers to synchronise with the one
with the largest shard version because larger shard versions
indicate a more refreshed version of parameters.

4.5 Implementation details

WAN optimisation. Ekko targets geo-distributed deploy-
ments, which comprise multiple intra-DC networks and an

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 827

inter-DC WAN. To improve its performance with such de-
ployments, Ekko uses a WAN-optimised model update dissem-
ination strategy. This strategy constructs a flexible commu-
nication topology for P2P synchronisation. It lets each DC
elect a local leader for each shard using Zookeeper [31]. The
leaders pull model updates from other DCs while other repli-
cas pull updates from this leader. By doing so, Ekko allows
a large proportion of synchronisation traffic to go through
bandwidth affluent intra-DC networks and only a small of
synchronisation traffic to go over WANs. Note that the imple-
mentation of the parameter synchronisation does not require a
specific communication topology. Ekko can use other overlay
topologies to improve synchronisation performance.
Failure tolerance. Ekko uses the request routers to toler-
ate failures. The routers decide the routes of client requests,
and they detect the healthiness of replicas using heartbeats.
Suppose a router speculates a replica failure (either fail-stop
or fail-slow [30]). In that case, it prevents clients (inference
servers and training servers) from requesting that replica. It
also tracks the shard knowledge of replicas in the cluster. If a
previously suspected failed replica recovers and sends heart-
beats to the router, the router will instruct that replica to catch
up with a sufficiently updated replica in the cluster. When
the catching-up finishes, the router directs client requests to
that replica. If a replica loses its state, it re-joins the clus-
ter with a new id. Training servers stop sending parameter
updates if they cannot contact the router for a given period,
which achieves best-effort protection of model parameters
from divergence in the case of having network partitions [5].

5 SLO Protection Mechanisms

Ekko allows model updates to reach parameter servers in in-
ference clusters directly. This, however, raises two challenges
for the SLOs of recommendation services: (i) network con-
gestion can cause critical model updates to be delayed, and
(ii) model updates based on a small batch of biased data can
have detrimental impacts on inference results.

This section introduces mechanisms that protect inference
SLOs from network congestion and biased updates. We first
define the SLOs (see §5.1), describe an SLO-aware model
update scheduler (see §5.2), and discuss an inference model
state manager that handles biased updates (see §5.3).

5.1 SLOs in a DLRS
A DLRS has two major types of SLOs:

• Freshness SLOs measure the latency of including new
content and users in model inference. They are vital for
recommendation services, especially those interacting
with users in real-time, e.g. TikTok and YouTube. For
example, such services often need to capture the inter-
ests of new users in a timely manner so that they are

User embeddings

Item 1

Item 2

Item N

User
request

Recommendation
result

DNNs

…

…

…Item embeddings

Figure 4: Overview of the inference process in Ekko.

sufficiently engaged; otherwise, they leave the recom-
mendation applications due to the loss of interest. Im-
proving the freshness SLOs usually leads to a better user
experience. Also, new content will have better exposure,
securing the prosperity of DLRSs.

• Quality SLOs measure user experience and engagement.
They have immediate impacts on the profitability of a
DLRS. Examples of such objectives include the number
of viewed videos and user watching time.

Figure 4 describes how an inference server affects the fresh-
ness and quality SLOs. Once receiving a request, the inference
server selects related user and item embeddings. It then aggre-
gates the embeddings and sends an aggregated embedding to
a DNN that returns the scores for recommendation items. The
DLRS finally returns a list of items sorted by the scores. In
this case, the freshness SLO is measured based on the latest
timestamp of the recommended items (Ideally, this timestamp
should be as close to the current time as possible). The quality
SLO can be measured based on the viewing time of the items
and how many items are clicked. In practice, Ekko main-
tains a large number of freshness and quality SLOs online.
The implementations of such SLOs are contributed by DLRS
application developers.

5.2 SLO-aware model update scheduler

Ekko prevents both freshness and quality SLOs from being
affected by network congestion. This is achieved by an SLO-
aware model update scheduler and an integration of this sched-
uler into P2P model update dissemination.

5.2.1 SLO-aware priorities for model updates

Ekko computes a set of priorities in scheduling model updates:
Update freshness priority. Ekko computes an update fresh-
ness priority pu. This priority is designed based on the follow-
ing observation. If a parameter has been created recently, it
has a high priority; otherwise, it has a relatively lower priority.
The reason for this is that newly created parameters have more
significant impacts on inference results than those served for

828 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

an extended period. Suppose a user’s embedding is unavail-
able in the inference server, but her request has arrived. In this
case, the DLRS cannot answer this request, compromising
quality SLOs. Another case is that if the embedding table
does not include an item on the inference servers, the DLRS
will not recommend this item, compromising freshness SLOs.
Update significance priority. Ekko computes an update sig-
nificance priority pg for each model update based on its gra-
dient g. This priority is initially inspired by studies which
showed how the gradient magnitude |g| affects the inference
results of a DNN [6, 28]. However, naively adopting the gra-
dient magnitude is insufficient in Ekko. As a shared DLRS,
Ekko multiplexes the updates from different models on a
shared network. As a result, Ekko must have ways to compare
gradient magnitudes that have different distributions. There-
fore, we define pg = |g|/|g|, where |g| denotes the 1-norm of
g and |g| denotes the average gradient magnitude of recent
model updates. Intuitively, this definition normalises gradient
magnitudes, thus making them comparable.
Model priority. In a DLRS, models often receive inference
requests at different rates, indicating their varied importance
in measuring the overall satisfaction of SLOs. To consider this,
Ekko allows the models that handle the majority of requests
to be assigned with higher priorities compared to those that
rarely receive requests. To this end, we define the model
priority as pm = cm/∑

M
i=1 ci, where cm is the request count of

model m and ∑
M
i=1 ci denotes the total request count of all M

models.
Combining priorities. We combine all the above priorities
to compute the overall priority p of a model update as below:

p = (pg + pu) pm

where the significance priority pg and the freshness priority
pu have both been normalised so that they can be summed up.
The sum is multiplied by the model priority pm.

Note that Ekko does not require its users only to use the
above priorities. Some Ekko users have custom priority defini-
tions, including update count, update interval and the positions
of parameters in embedding tables. These custom priorities
are specific to certain DLRS workloads [69], and they are
not generic enough to be included in a default setting. Ekko
accommodates these custom priorities by supporting User-
Defined-Functions (UDFs) in defining priorities.

5.2.2 Scheduler implementation

The model update scheduler computes the priority for each
update once it is produced. It needs to ensure the cost of pri-
ority computation is negligible; otherwise, it can become a
bottleneck in model updates. To achieve this, the scheduler
offloads the maintenance of priority-related statistics (e.g. |g|
and pm for each model m) to a background thread. Moreover,
to bound memory cost, it uses a quantile sketch (e.g. DDS-
ketch [52]) that computes the k percentile priority pk in a time

Algorithm 2: Priority-based synchronisation

1 Function UpdateSVV(SVVother):
2 SVV.Merge(SVVother);
3 T SVV.Merge(SVV);
4 Function WriteStoreParameter(p):
5 WriteI fVersionLarger(store, p);
6 EraseI fVersionNotSmaller(storesigni f icant , p);
7 Function OnRecvPrioritisedSync(T SVVother):
8 reply.T SVV ← T SVV ;
9 for p ∈ (store

⋃
storesigni f icant) do

10 if not T SVVother.Dominate(p.sigv) then
11 reply.parameters.Add(p);
12 end
13 end
14 return reply;
15 Function PrioritisedSync():
16 reply← OnRecvPrioritisedSyncother(T SVV);
17 for p ∈ reply.parameters do
18 if VersionLarger(store

⋃
storesigni f icant , p)

then
19 storesigni f icant [p.name]← p;
20 end
21 end
22 T SVV.Merge(reply.T SVV)

window, where k is a ratio set by algorithm managers. Ekko
executes user-defined priority computation using WebAssem-
bly [27] to achieve efficient isolation among UDFs.
Integrating schedulers into parameter servers. To achieve
the promise of priority scheduling, we must have ways of
integrating the schedulers into the parameter servers which
have enabled log-less P2P synchronisation. To this end, we
propose the significant version, denoted as sigv, for each pa-
rameter and the significant knowledge SVV for each shard.
Moreover, Ekko assigns each shard with a transient significant
parameter store storesigni f icant and a corresponding transient
significant knowledge T SVV to enable P2P synchronisation
with priority scheduling.

Algorithm 2 describes the log-less P2P synchronisation
augmented with priority schedulers. Suppose we have a model
update from a replica. In this case, Ekko calculates p. If
p≥ pk, Ekko sets sigv= v, where v is the parameter version of
this update; otherwise, sigv remains unchanged. Then, Ekko
uses sigv to construct SVVother and call the UPDATESVV
function (line 1). In the case that Ekko does not apply priori-
ties in synchronisation, replicas exchange SVV and execute
the UPDATESVV function. On writing parameters into the
persistent parameter store, Ekko prunes superseded param-
eters by executing the WRITESTOREPARAMETER function
(line 4). Note that replicas estimate how long the model up-
dates to reach themselves. Hence, when network congestion
occurs, servers will have update time-outs. In this case, Ekko

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 829

uses the PRIORITISEDSYNC function (line 15) that triggers
priority schedulers in synchronisation. Once receiving re-
quests, replicas prefer to return parameters in significant pa-
rameter stores.

5.3 Inference model state manager

Ekko uses an inference model state manager to protect SLOs
from detrimental model updates. This manager monitors in-
ference models’ healthiness (i.e. quality SLOs) and conducts
low-latency model state rollback on demand.

5.3.1 Monitoring model healthiness

Ekko monitors model healthiness based on the following idea:
for a DLRS application, it creates baseline models for its
inference models. Baseline models process a small amount
of user traffic (usually < 1%). They are different from the
online inference models because they carry delayed states. In
other words, they are trained with previous training samples,
usually several minutes earlier than the samples training the
current inference model.

Ekko measures model healthiness based on metrics col-
lected from inference servers and clients (e.g. user devices).
To compute these metrics, Ekko defines a custom watermark
and trigger [3]. Its state manager emits anomaly detection
events only if confident (i.e. observing monitoring data for
an extended period). Note that Ekko is not constrained to use
specific anomaly detection algorithms. It supports custom
anomaly detection algorithms, such as those often used with
time-series data [61].

We model the transition of model states (i.e. healthy
or not) as a replicated state machine [63], implemented
within the model state manager. This manager evaluates and
records model healthiness at a timestamp t by inspecting the
healthiness-related metrics and the model update latency. The
timestamp t monotonically increases. The manager makes
judgements if the model state is healthy, corrupted or uncer-
tain. When the manager is confident that changes have oc-
curred in the model state (i.e. healthy or corrupted), it records
this information in its replicated state. If the model state has
corrupted, the manager re-directs client requests to alternative
inference models (still healthy) and then launches a model
state rollback.

5.3.2 Low-latency model state rollback

Ekko uses witness servers to roll back corrupted model states
at low latency. The witness servers join replica synchroni-
sation but they do not participate in model training. Unlike
parameter servers, the witness servers (i) do not immediately
flush updated parameters into parameter stores and (ii) do not
run priority scheduling in synchronisation. More specifically,
Ekko inserts the parameter updates that are not flushed yet

Parameter
Server

Parameter
Server

Quality SLOs

Baseline

Model State Manager

Parameter
Server

Healthy

Update Log

Witness Server

Healthy Parameter Store

Sync

Flush

Corrupted Uncertain

Decide model state:

Update Log
Update Log

Stop
update

Start rollback

Get recent
updates

Set values
back

Resume
update

Figure 5: Inference model state manager.

into the logs. The logs are attached with the physical times-
tamp of synchronisation (denoted as t). If there are multiple
synchronisation operations in a small time window, Ekko
merges their logs to save space.

The model state manager controls witness servers to launch
state rollbacks. Suppose a model state is regarded as thealthy
at the time t. In that case, witness servers find a timestamp
tmax that meets two conditions: (i) it is ≤ thealthy and (ii) it is
not within any time interval where corrupted states have oc-
curred. The witness servers then flush the logs which have the
timestamps≤ tmax. The model state manager records this tmax,
and tmax will be later used in witness servers for recovering a
healthy model state. Following this way, we can ensure the
parameter store storehealthy always keep healthy model states
on witness servers.

Rollback process. Figure 5 illustrates the process of rolling
back a model state. Suppose a model is found to be corrupted.
The model state manager first informs parameter servers to
stop accepting training requests of this model (1). It then
instructs parameter servers to stop priority-based synchroni-
sation, clears their storesigni f icant , and resets T SVV = SVV .
The manager then waits for the model shards on parameter
servers and witness servers to converge. Later, the manager
selects witness servers to initiate the state rollback (2). We
need to ensure recovered model shards can be used together.
Hence, the manager selects shards from the storehealthy on
witness servers only if tmax of these shards are in a small time
window.

A key design is that the witness servers will compare
storehealthy and its current state to find a state difference (3).
This difference is often small because of the locality in up-
dated parameters. We thus only write the difference into the
parameter servers to recover a state. We need to ensure the
write operations can succeed. Hence, the written parame-
ters are assigned with parameter versions that are larger than
those currently on parameter servers (4). After that, the man-

830 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

ager waits for the model shards to converge on parameter
servers and witness servers. Finally, Ekko will recover a small
amount of traffic on the recovered model. When this model’s
healthiness metrics go back to normal, the manager informs
parameter servers to resume accepting requests (5).

Note that if a witness server fails, its non-flushed update
logs are discarded. This helps Ekko prevent potentially cor-
rupted updates from being flushed. If a parameter server or
a witness server fails (or re-joins the cluster), the rollback
process will be re-executed.

6 Evaluation

In this section, we evaluate the following aspects of Ekko
through test-bed and in-production experiments: (i) The up-
date latency of Ekko and its scalability with the number of
data centres (§6.1.1); (ii) The update latency of Ekko in a
heterogeneous-WAN (§6.1.1); (iii) The performance break-
down of optimisations implemented in Ekko (§6.1.2); (iv) The
real-world latency and availability of Ekko in a large-scale pro-
duction DLRS (§6.2.1); (v) The benefits of low-latency model
updates in online services (§6.2.1); (vi) The effectiveness of
using model update schedulers with a busy network (§6.2.2);
and (vii) The latency of rolling back a model upon model
corruption (§6.2.2).

Unless otherwise specified, the update latency is the max-
imum time difference between the time an update commits
and the time this update becomes visible [68] in all replicas
(failure-free scenarios). In all experiments, we measure the
update latency and report its average across all updates.

6.1 Test-bed experiments

We conduct test-bed experiments in a 30-server cluster. Each
server has a 24-core CPU, 64 GB RAM and a 5 Gbps network
link. We group every three servers as a DC to emulate a
multi-DC scenario, forming up to 10 DCs. We choose one of
the DCs as the training-oriented DC, which receives model
updates from a server (which acts as a DLRS client). We let
other DCs be inference-oriented and connect them with the
training-oriented DC. The inter-DC bandwidth is 4,800 Mbps
(unless otherwise specified), emulating a WAN.

Our test-bed experiments comprise two workloads. The
first workload trains a large ranking model typically used in
our production environments. In this workload, we choose the
shard size as 0.4 MB. The second workload trains the Wide &
Deep model [10] using the Criteo Terabyte Click Logs [17]
sorted chronologically. We initialise embedding tables using
21-day data logs. To ensure experiments are reproducible,
we record model update traces and replay them during the
experiments.

1 5 10
Number of data centres

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

La
te

nc
y

(s
)

Ekko
Adam

(a) Production workload

1 5 10
Number of data centres

0

2

4

6

8

10

La
te

nc
y

(s
)

Ekko
Adam

(b) Criteo workload

Figure 6: Average model update latency.

6.1.1 Update latency

We evaluate Ekko’s update latency in a homogeneous WAN
and a heterogeneous WAN. Both of these WANs are common
in the real world. The first baseline is Adam [11] which is
often used in parameter servers to synchronise model updates
using the two-phase commit protocol. Our Adam implemen-
tation removes the waiting time between update broadcasts,
thus improving network utilisation. The second baseline is
Checkpoint-Broadcast which is the de-facto approach that
applies model updates in DLRSs [1, 21]. We omit the experi-
ments with general key-value stores, e.g. PaxosStore [73] and
TiKV [29], which provide linearisability in writing operations.
Our early adoption results show that these key-value stores
achieve low writing throughput, orders of magnitude lower
than what a production DLRS requires.

To make a fair comparison, Ekko and baselines all
use DRAM for storage [57] and adopt the same primary-
assignment and load-balancing schemes. We further ensure
their dissemination are all network-bound and use the same
numbers of shards.
Homogeneous WAN results. We first compare Ekko against
Adam in the homogeneous WAN. We measure their latency
with 1 DC (3 replicas), 5 DCs (15 replicas), and 10 DCs (30
replicas), respectively. Figures 6a and 6b show the results. As
we can see, Ekko achieves significantly lower latency than
Adam in both the production and Criteo workloads. More
specifically, with the 10 DCs that run the production work-
load, Ekko achieves a 2.6-second latency, 7× lower than the
18.8-second latency achieved by Adam. We also observe that
the performance gap between Ekko and Adam increases with
more DCs. The reason is that Ekko has a scalable P2P syn-
chronisation architecture. It also optimises its dissemination
topology for a WAN. In contrast, Adam relies on the primary
replica to send updates, constraining itself with the limited
bandwidth available in the training DC.

We also compare Ekko against Checkpoint-Broadcast. Ac-
cording to our experimental results, Checkpoint-Broadcast
takes more than 7 seconds to synchronise 4 GB of param-
eters in the WAN. The total parameters are 113 GB. With

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 831

0 5 10 15 20 25 30
Number of machines synced

0

50

100

150

Ti
m

e
(s

)

Ekko
Adam

(a) Production workload

0 5 10 15 20 25 30
Number of machines synced

0

50

100

Ti
m

e
(s

)

Ekko
Adam

(b) Criteo workload

Figure 7: Update latency in a heterogeneous WAN.

10 DCs, the training DC needs to send 113×9 = 1,017 GB
parameters to all other inference DCs. The training DC thus
has to spend more than 29 minutes finishing the parameter
broadcast (since the WAN has a 4,800 Mbps network link).
This broadcast latency is orders of magnitude longer than the
second-level latency (e.g. 2.6 seconds) achieved by Ekko.
Heterogeneous WAN results. We then evaluate Ekko and
baselines in the heterogeneous WAN. In this WAN, we set
inter-DC bandwidth to 256 Mbps by default. To introduce
heterogeneity, we choose one link in between the training DC
and another inference DC, and we set this link to 128 Mbps.
The experiments run with 3 replicas per DC, for a total of
10 DCs. As shown in Figures 7a and 7b, Ekko is effective
in mitigating slow heterogeneous links in both production
and Criteo workloads. It allows replicas to synchronise at
independent rates, preserving second-level synchronisation
latency. Such low-latency performance shows the effective-
ness of Ekko’s log-less P2P synchronisation in alleviating the
adverse effects of having heterogeneous network paths. On
the contrary, Adam suffers from the slow paths in the WAN.
As a result, it spends more than 150 seconds synchronising
replicas in the production workload and 100 seconds in the
Criteo workload.

Apart from Adam, we also considered other log-based syn-
chronisation approaches, e.g. Multi-Paxos [9]. We could let
these approaches aggregate updates (which arrive in a time
interval) into a log entry to save bandwidth in using a WAN.
These approaches, however, still suffer from the existence
of heterogeneous links. This is because they choose the ag-
gregation interval based on the slowest links in the network,
under-utilising many other links.

6.1.2 Performance breakdown

We want to know the effectiveness of individual compo-
nents in Ekko’s synchronisation. We thus conduct a perfor-
mance breakdown analysis for the production workload with
10 DCs. We first configure Ekko to only use shard knowl-
edge (see §4.3) in synchronisation. This configuration is the
baseline in this experiment, and it is equivalent to the Ver-
sion Vector (VV) [50, 51] which is the state-of-the-art of P2P
synchronisation.

Figure 8 shows the results. With only VV, Ekko needs 76.3
seconds to synchronise all parameters. After enabling update

VV +Cache +Shard +WAN-opt0

10

20

30

40

50

60

70

80

La
te

nc
y

(s
)

Figure 8: Performance breakdown.

caches (§4.4.1), Ekko reduces the latency to 27.4 seconds
(i.e. 2.8× speed-up). Diving into the update caches traces, we
find out the caches achieve a 100% hit ratio in our production
workload. Note that the total memories of a replica on our test-
bed servers are smaller (i.e. 10×) than those on our production
servers, which means there are fewer parameters in a shard
than in practical scenarios. With more parameters in a shard,
VV will spend more time on synchronisation, while update
caches can keep latency low.

Figure 8 also shows the effects of shard versions (§4.4.2).
By further enabling shard versions, Ekko reduces the latency
from 27.4 seconds to 6.0 seconds (i.e. 4.6× speed-up). This
shows the effects of skipping non-updated shards to reduce
network consumption incurred by synchronisation.

Finally, after enabling WAN optimisations (§4.5), Ekko
further reduces the latency from 6.0 seconds to 2.6 seconds
(i.e. 2.3× speed-up). This shows that P2P synchronisation
must account for the bandwidth available on each link in
a WAN. Otherwise, P2P synchronisation cannot deliver its
full promise. In summary, enabling all components in Ekko
leads to a total of 29.3× (i.e. 2.6 seconds vs. 76.3 seconds)
speed-up in P2P synchronisation.

6.2 Production cluster experiments
We have deployed Ekko into production for over one year.
The production environment comprises 4,600 servers spread
across 6 geo-distributed DCs. By 2022, we have used Ekko to
support a wide range of recommendation services, including
short video recommendations, searching and advertisement.
More than one billion users are using these services daily. In
this section, we report Ekko’s performance in this production
environment.

6.2.1 Model updates

We collect traces from the production environment to anal-
yse Ekko’s performance in updating models. The production
environment has hundreds of DLRS models (40 TB parame-
ters or 250 billion key-value pairs in total). Each parameter
shard ranges from 0.1 MB to 20 MB depending on model size.
Ekko can execute 1 billion updates per second (i.e. 212 GB/s).

832 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

0 60 120 180 240 300 360 420 480
Time (minutes)

0
2
4
6
8

10
12

%
 o

f p
ar

am
et

er
s

10 min 20 min 30 min 60 min

Figure 9: The proportions of updated parameters over time in
different time intervals.

Regarding latency performance, Ekko spends 2.4 seconds
synchronising the parameters in all DCs and 0.7 seconds in
the training DC only. The synchronisation traffic accounts for
only 3.0% of the total network traffic, reflecting the effective-
ness of Ekko used as a background synchronisation service
on parameter servers. Ekko’s low-latency, high-throughput
performance does not compromise system availability. Since
its deployment, Ekko has achieved >99.999% availability for
parameter reading and writing operations.
Update cache analysis. We are particularly interested in the
performance of the update caches with various real-world
recommendation services. Our traces show that: the update
cache only needs to keep 0.13%-0.2% parameters in caches,
and they can already achieve >99.4% hit ratios. These perfor-
mance results verify that the update locality widely exists. In
fact, our production recommendation services update 3.08%
of the parameters per hour on average.

We choose an update-intensive DLRS model to demystify
the update locality in the worse case. Figure 9 shows the
proportions of updated parameters in a 480-minute window.
This time window covers the busiest time of our production
DLRSs in a day. We report the proportions with different time
intervals. In a 10-minute interval, only 4.3% of parameters are
updated, and this proportion is stable in the 480-minute time
window. In a 60-minute interval, we observe a similar pattern,
and the proportion only slightly increases to around 10%. In
practice, many other models have fewer update workloads,
and their proportions of updated parameters are lower than
this model.
Benefits of low-latency model updates. We want to know
if the low-latency model updates can actually improve the
quality of recommendation services. To this end, we con-
duct a 15-day online A/B test [64] in a short video recom-
mender service [65]. This service comprises a multi-stage
pipeline [10,15]. We conduct the experiment only in the rank-
ing stage. We fork the ranking model: one as the experimental
group and the other as the control group. Each group receives
1% of the total traffic for training and inference. We delay
the data (i.e. event logs) used to train the model in the con-
trol group by 20 minutes through caching real-time logs in a

distributed file system.
Our A/B-test results show that: compared to the control

group, the experimental group exhibits a 3.82% increase in
the proportion of fresh videos (posted within one hour) among
all recommended videos. This means that the system recom-
mends more fresh videos to users in the experimental group.

Moreover, the experimental group exhibits a 1.30% de-
crease in the proportion of users swiping through the video
list as well as a 1.68% increase in the total time of brows-
ing videos. These mean that users in the experimental group
spend more time watching videos and are more interested in
the recommended videos.

Finally, the experimental group exhibits a 2.17% increase in
the percentage of users who clicked on comments. This means
that user interaction in the experimental group increases. It
is worth noting that the improvements in the range of 1%-
3% are regarded as significant in a real-world multi-stage
DLRS [10, 21, 71]. In fact, since enabling low-latency model
updates in more stages in DLRSs, we have observed more
significant improvements in recommendation quality.

6.2.2 SLO protection mechanisms

We also run A/B tests to evaluate the effectiveness of Ekko’s
SLO protection mechanisms.
SLO-aware model update scheduler. We fork the ranking
model into an experimental group (where priority schedulers
are enabled) and a control group. Each group has 1% of
the training and inference traffic, and they are deployed into
dedicated servers to avoid traffic interference. We monitor
metrics that reflect freshness SLOs: the count of fresh videos
(i.e. posted in the last one hour) in recommendation results.
To emulate network congestion, we reduce the bandwidth
available for model updates by 92%. The model update sched-
uler (i) uses the default priority computation rule (defined in
§5.2.1) and (ii) sets the percentile priority k to 99 (k is defined
in §5.2.2).

The A/B-test results show that, in the experimental group,
Ekko reduces synchronisation traffic by 92% and keeps the
latency of updating significant updates low. In contrast, the
control group cannot distinguish model updates when sending
them over a busy network. As a result, the control group de-
lays SLO-critical updates, and it suffers from a 2.32% drop in
its SLO metric. Such a drop is significant in practice because
this SLO metric is a key factor that decides the profit of a
DLRS.
Online model state rollback. We evaluate the latency of
rolling back a model state online. We compare Ekko with the
checkpoint-recovery approach. To make a fair comparison,
we let the rollback latency exclude (i) the time of collecting
SLO metrics in Ekko and (ii) the time of waiting for diverged
parameters to converge. We deploy 5 witness servers. For
each witness server, we allocate 113 GB parameters and 800
Mbps network bandwidth.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 833

Ekko Checkpointer

101

102

103
Ti

m
e

(s
)

Figure 10: Model state rollback time.

During the experiment, we notify Ekko’s model state man-
ager to roll back the state of a DLRS model to a version that is
1 minute earlier. The manager then notifies all witness servers
to identify the parameters updated in the last 1 minute. The
witness servers thus only reload the difference between the
current state and the earlier state. Hence, the entire rollback
operation takes only 6.4 seconds to complete. In contrast,
the checkpoint-recovery approach is agnostic to the recent
updates to the model state. As a result, it has to reload the
entire state, taking 1,157 seconds to complete (180× slower
than Ekko).

7 Related Work

Data replication systems. The parameter synchronisation
problem explored in Ekko is related to prior work on data
replication. Existing data replication systems often explore
how to leverage the characteristics of applications to improve
their latency performance in replicating data [13, 40, 45, 53].
For example, Egalitarian Paxos [53] exploits the low in-
terference rate of state machine commands, Gemini [40]
leverages mixed consistency operations, and COPS [45] and
PNUTS [13] exploit the tolerance of relaxed consistency in
Internet services. Unlike these systems, Ekko leverages the
DLRS-specific model update locality and the eventual con-
sistency model to speed up the synchronisation of model
parameters (instead of generic data), making Ekko unique in
the design space.
Bandwidth saving techniques in ML systems. The prob-
lem of prioritising model updates relates to bandwidth saving
techniques in distributed ML systems. Such techniques often
involve gradient compression [4, 6, 28, 44] which prioritises
large gradients in a busy network, with an anticipation that
these large gradients have significant impacts on the final
accuracy of a trained model. Unlike these techniques, Ekko
targets model inference scenarios where people care about
numerous inference SLO metrics instead of the model’s accu-
racy only. Hence, Ekko does not rely on gradient magnitude
solely. It further considers model freshness and priority in
scheduling model updates.

SLO-aware scheduling in ML systems. Being aware of
SLOs in scheduling has been explored in prior ML systems.
Model serving systems often treat inference latency as the
primary SLO to guide the scheduling of inference-related
computation tasks [16, 25, 70]. Model training systems, e.g.
Pollux [59] and KungFu [48], use ML-specific SLOs, e.g.
training goodput and gradient statistics, to decide how to
schedule training workers. Compared to these systems, Ekko
sheds light on freshness and quality SLOs. It enables the use
of these SLOs in scheduling model updates.

8 Conclusion

This paper proposes Ekko, a novel DLRS that enables massive
model parameters to be updated at the second-level latency.
Ekko has an efficient P2P model update algorithm which can
coordinate billions of model updates to be efficiently dissemi-
nated to replicas in geo-distributed data centres. It further has
SLO protection mechanisms that protect model states from
being affected by network congestion and detrimental model
updates online. Experimental results show that Ekko is orders
of magnitudes faster than state-of-the-art DLRSs, indicating
the effectiveness of its novel designs.

Acknowledgements

We sincerely thank our shepherd Miguel Castro and the OSDI
reviewers for their insightful suggestions. This paper presents
a multi-team effort previously known as WeChat Parameter
Server (WePS). Part of this work is supported by gift funding
from Tencent.

References

[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker,
Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. TensorFlow: A system for Large-
Scale machine learning. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
16), pages 265–283, Savannah, GA, November 2016.
USENIX Association.

[2] Ailidani Ailijiang, Aleksey Charapko, and Murat Demir-
bas. Dissecting the performance of strongly-consistent
replication protocols. In Proceedings of the 2019 In-
ternational Conference on Management of Data, pages
1696–1710, 2019.

[3] Tyler Akidau, Robert Bradshaw, Craig Chambers,
Slava Chernyak, Rafael Fernández-Moctezuma, Reuven

834 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Lax, Sam McVeety, Daniel Mills, Frances Perry, Eric
Schmidt, and Sam Whittle. The dataflow model: A prac-
tical approach to balancing correctness, latency, and cost
in massive-scale, unbounded, out-of-order data process-
ing. Proc. VLDB Endow., 8(12):1792–1803, 2015.

[4] Dan Alistarh, Torsten Hoefler, Mikael Johansson, Nikola
Konstantinov, Sarit Khirirat, and Cedric Renggli. The
convergence of sparsified gradient methods. In S. Ben-
gio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 31. Curran As-
sociates, Inc., 2018.

[5] Ahmed Alquraan, Hatem Takruri, Mohammed Alfatafta,
and Samer Al-Kiswany. An analysis of Network-
Partitioning failures in cloud systems. In 13th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 18), pages 51–68, Carlsbad, CA, Oc-
tober 2018. USENIX Association.

[6] Youhui Bai, Cheng Li, Quan Zhou, Jun Yi, Ping Gong,
Feng Yan, Ruichuan Chen, and Yinlong Xu. Gradi-
ent Compression Supercharged High-Performance Data
Parallel DNN Training, page 359–375. Association for
Computing Machinery, New York, NY, USA, 2021.

[7] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp,
Dzmitry Huba, Alex Ingerman, Vladimir Ivanov, Chloé
Kiddon, Jakub Konečný, Stefano Mazzocchi, Brendan
McMahan, Timon Van Overveldt, David Petrou, Daniel
Ramage, and Jason Roselander. Towards federated learn-
ing at scale: System design. In A. Talwalkar, V. Smith,
and M. Zaharia, editors, Proceedings of Machine Learn-
ing and Systems, volume 1, pages 374–388, 2019.

[8] ByteDance. TikTok. https://www.tiktok.com/,
2021. Accessed on 2021-12-08.

[9] Tushar D. Chandra, Robert Griesemer, and Joshua Red-
stone. Paxos made live: An engineering perspective. In
Proceedings of the Twenty-Sixth Annual ACM Sympo-
sium on Principles of Distributed Computing, PODC
’07, page 398–407, New York, NY, USA, 2007. Associ-
ation for Computing Machinery.

[10] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal
Shaked, Tushar Chandra, Hrishi Aradhye, Glen Ander-
son, Greg Corrado, Wei Chai, Mustafa Ispir, et al. Wide
& deep learning for recommender systems. In Proceed-
ings of the 1st workshop on deep learning for recom-
mender systems, pages 7–10, 2016.

[11] Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and
Karthik Kalyanaraman. Project adam: Building an effi-
cient and scalable deep learning training system. In 11th
USENIX Symposium on Operating Systems Design and

Implementation (OSDI 14), pages 571–582, Broomfield,
CO, October 2014. USENIX Association.

[12] Asaf Cidon, Stephen M. Rumble, Ryan Stutsman,
Sachin Katti, John K. Ousterhout, and Mendel Rosen-
blum. Copysets: Reducing the frequency of data loss
in cloud storage. In Andrew Birrell and Emin Gün
Sirer, editors, 2013 USENIX Annual Technical Confer-
ence, San Jose, CA, USA, June 26-28, 2013, pages 37–48.
USENIX Association, 2013.

[13] Brian F Cooper, Raghu Ramakrishnan, Utkarsh Srivas-
tava, Adam Silberstein, Philip Bohannon, Hans-Arno
Jacobsen, Nick Puz, Daniel Weaver, and Ramana Yer-
neni. Pnuts: Yahoo!’s hosted data serving platform.
Proceedings of the VLDB Endowment, 1(2):1277–1288,
2008.

[14] James C. Corbett, Jeffrey Dean, Michael Epstein, An-
drew Fikes, Christopher Frost, J. J. Furman, Sanjay
Ghemawat, Andrey Gubarev, Christopher Heiser, Pe-
ter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eu-
gene Kogan, Hongyi Li, Alexander Lloyd, Sergey Mel-
nik, David Mwaura, David Nagle, Sean Quinlan, Rajesh
Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak,
Christopher Taylor, Ruth Wang, and Dale Woodford.
Spanner: Google’s globally-distributed database. In
Proceedings of the 10th USENIX Conference on Operat-
ing Systems Design and Implementation, OSDI’12, page
251–264, USA, 2012. USENIX Association.

[15] Paul Covington, Jay Adams, and Emre Sargin. Deep
neural networks for youtube recommendations. In Pro-
ceedings of the 10th ACM Conference on Recommender
Systems, RecSys ’16, page 191–198, New York, NY,
USA, 2016. Association for Computing Machinery.

[16] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J.
Franklin, Joseph E. Gonzalez, and Ion Stoica. Clipper:
A low-latency online prediction serving system. In 14th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17), pages 613–627, Boston, MA,
March 2017. USENIX Association.

[17] CRITEO. CRITEO Terabyte Click Logs. https://la
bs.criteo.com/2013/12/download-terabyte-cl
ick-logs/, 2022. Accessed on 2022-05-04.

[18] Gabriel de Souza Pereira Moreira, Sara Rabhi,
Jeong Min Lee, Ronay Ak, and Even Oldridge. Trans-
formers4Rec: Bridging the Gap between NLP and
Sequential / Session-Based Recommendation, page
143–153. Association for Computing Machinery, New
York, NY, USA, 2021.

[19] Jeffrey Dean and Luiz André Barroso. The tail at scale.
Commun. ACM, 56(2):74–80, 2013.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 835

https://www.tiktok.com/
https://labs.criteo.com/2013/12/download-terabyte-click-logs/
https://labs.criteo.com/2013/12/download-terabyte-click-logs/
https://labs.criteo.com/2013/12/download-terabyte-click-logs/

[20] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John
Larson, Scott Shenker, Howard Sturgis, Dan Swinehart,
and Doug Terry. Epidemic algorithms for replicated
database maintenance. In Proceedings of the sixth an-
nual ACM Symposium on Principles of distributed com-
puting, pages 1–12, 1987.

[21] Assaf Eisenman, Kiran Kumar Matam, Steven Ingram,
Dheevatsa Mudigere, Raghuraman Krishnamoorthi, Kr-
ishnakumar Nair, Misha Smelyanskiy, and Murali An-
navaram. Check-N-Run: a checkpointing system for
training deep learning recommendation models. In 19th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22), pages 929–943, Renton, WA,
April 2022. USENIX Association.

[22] Facebook. Instagram. https://www.instagram.co
m/, 2021. Accessed on 2021-12-11.

[23] Weihao Gao, Xiangjun Fan, Chong Wang, Jiankai Sun,
Kai Jia, Wenzhi Xiao, Ruofan Ding, Xingyan Bin, Hui
Yang, and Xiaobing Liu. Learning an end-to-end struc-
ture for retrieval in large-scale recommendations. In
Gianluca Demartini, Guido Zuccon, J. Shane Culpep-
per, Zi Huang, and Hanghang Tong, editors, CIKM ’21:
The 30th ACM International Conference on Information
and Knowledge Management, Virtual Event, Queens-
land, Australia, November 1 - 5, 2021, pages 524–533.
ACM, 2021.

[24] Google. Youtube. https://www.youtube.com/, 2021.
Accessed on 2021-12-06.

[25] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao,
Antoine Kaufmann, Ymir Vigfusson, and Jonathan
Mace. Serving DNNs like clockwork: Performance
predictability from the bottom up. In 14th USENIX Sym-
posium on Operating Systems Design and Implementa-
tion (OSDI 20), pages 443–462. USENIX Association,
November 2020.

[26] Huifeng Guo, Ruiming TANG, Yunming Ye, Zhenguo
Li, and Xiuqiang He. Deepfm: A factorization-machine
based neural network for ctr prediction. In Proceed-
ings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence, IJCAI-17, pages 1725–1731,
2017.

[27] Andreas Haas, Andreas Rossberg, Derek L. Schuff,
Ben L. Titzer, Michael Holman, Dan Gohman, Luke
Wagner, Alon Zakai, and J. F. Bastien. Bringing the web
up to speed with webassembly. In Albert Cohen and
Martin T. Vechev, editors, Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI 2017, Barcelona, Spain,
June 18-23, 2017, pages 185–200. ACM, 2017.

[28] Kevin Hsieh, Aaron Harlap, Nandita Vijaykumar, Dim-
itris Konomis, Gregory R. Ganger, Phillip B. Gibbons,
and Onur Mutlu. Gaia: Geo-distributed machine learn-
ing approaching LAN speeds. In 14th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 17), pages 629–647, Boston, MA, March 2017.
USENIX Association.

[29] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu
Ma, Fei Xu, Li Shen, Liu Tang, Yuxing Zhou, Menglong
Huang, Wan Wei, Cong Liu, Jian Zhang, Jianjun Li,
Xuelian Wu, Lingyu Song, Ruoxi Sun, Shuaipeng Yu,
Lei Zhao, Nicholas Cameron, Liquan Pei, and Xin Tang.
Tidb: A raft-based htap database. Proc. VLDB Endow.,
13(12):3072–3084, aug 2020.

[30] Peng Huang, Chuanxiong Guo, Lidong Zhou, Jacob R.
Lorch, Yingnong Dang, Murali Chintalapati, and Ran-
dolph Yao. Gray failure: The achilles’ heel of cloud-
scale systems. In Alexandra Fedorova, Andrew Warfield,
Ivan Beschastnikh, and Rachit Agarwal, editors, Pro-
ceedings of the 16th Workshop on Hot Topics in Operat-
ing Systems, HotOS 2017, Whistler, BC, Canada, May
8-10, 2017, pages 150–155. ACM, 2017.

[31] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira,
and Benjamin Reed. Zookeeper: Wait-free coordination
for internet-scale systems. In USENIX annual technical
conference, volume 8, 2010.

[32] Biye Jiang, Chao Deng, Huimin Yi, Zelin Hu, Guorui
Zhou, Yang Zheng, Sui Huang, Xinyang Guo, Dongyue
Wang, Yue Song, Liqin Zhao, Zhi Wang, Peng Sun,
Yu Zhang, Di Zhang, Jinhui Li, Jian Xu, Xiaoqiang Zhu,
and Kun Gai. Xdl: an industrial deep learning frame-
work for high-dimensional sparse data. Proceedings
of the 1st International Workshop on Deep Learning
Practice for High-Dimensional Sparse Data, 2019.

[33] Diederik P Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[34] Alexandros Koliousis, Pijika Watcharapichat, Matthias
Weidlich, Luo Mai, Paolo Costa, and Peter Pietzuch.
Crossbow: Scaling deep learning with small batch sizes
on multi-gpu servers. Proceedings of the VLDB Endow-
ment, 12(11).

[35] Jakub Konečnỳ, H Brendan McMahan, Daniel Ramage,
and Peter Richtárik. Federated optimization: Distributed
machine learning for on-device intelligence. arXiv
preprint arXiv:1610.02527, 2016.

[36] Jay Kreps, Neha Narkhede, Jun Rao, et al. Kafka: A
distributed messaging system for log processing. In
Proceedings of the NetDB, volume 11, pages 1–7, 2011.

836 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.instagram.com/
https://www.instagram.com/
https://www.youtube.com/

[37] Fan Lai, Xiangfeng Zhu, Harsha V. Madhyastha, and
Mosharaf Chowdhury. Oort: Efficient federated learning
via guided participant selection. In 15th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 21), pages 19–35. USENIX Association, July
2021.

[38] Sangmin Lee, Zhenhua Guo, Omer Sunercan, Jun Ying,
Thawan Kooburat, Suryadeep Biswal, Jun Chen, Kun
Huang, Yatpang Cheung, Yiding Zhou, Kaushik Veer-
araghavan, Biren Damani, Pol Mauri Ruiz, Vikas Mehta,
and Chunqiang Tang. Shard manager: A generic shard
management framework for geo-distributed applications.
In Robbert van Renesse and Nickolai Zeldovich, editors,
SOSP ’21: ACM SIGOPS 28th Symposium on Operating
Systems Principles, Virtual Event / Koblenz, Germany,
October 26-29, 2021, pages 553–569. ACM, 2021.

[39] Adam Lerer, Ledell Wu, Jiajun Shen, Timothee Lacroix,
Luca Wehrstedt, Abhijit Bose, and Alex Peysakhovich.
Pytorch-biggraph: A large-scale graph embedding sys-
tem. arXiv preprint arXiv:1903.12287, 2019.

[40] Cheng Li, Daniel Porto, Allen Clement, Johannes
Gehrke, Nuno Preguiça, and Rodrigo Rodrigues. Mak-
ing Geo-Replicated systems fast as possible, consis-
tent when necessary. In 10th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
12), pages 265–278, Hollywood, CA, October 2012.
USENIX Association.

[41] Mu Li, David G. Andersen, Jun Woo Park, Alexander J.
Smola, Amr Ahmed, Vanja Josifovski, James Long, Eu-
gene J. Shekita, and Bor-Yiing Su. Scaling distributed
machine learning with the parameter server. In 11th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14), pages 583–598, Broomfield,
CO, October 2014. USENIX Association.

[42] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang,
and Zhihua Zhang. On the convergence of fedavg on
non-iid data. In International Conference on Learning
Representations, 2020.

[43] Yuliang Li, Gautam Kumar, Hema Hariharan, Hassan
Wassel, Peter Hochschild, Dave Platt, Simon Sabato,
Minlan Yu, Nandita Dukkipati, Prashant Chandra, and
Amin Vahdat. Sundial: Fault-tolerant clock synchroniza-
tion for datacenters. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
20), pages 1171–1186. USENIX Association, November
2020.

[44] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and Bill
Dally. Deep gradient compression: Reducing the com-
munication bandwidth for distributed training. In In-

ternational Conference on Learning Representations,
2018.

[45] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky,
and David G. Andersen. Don’t settle for eventual: Scal-
able causal consistency for wide-area storage with cops.
In Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, SOSP ’11, page 401–416,
New York, NY, USA, 2011. Association for Computing
Machinery.

[46] Luo Mai, Chuntao Hong, and Paolo Costa. Optimizing
network performance in distributed machine learning.
In 7th USENIX Workshop on Hot Topics in Cloud Com-
puting (HotCloud 15), 2015.

[47] Luo Mai, Alexandros Koliousis, Guo Li, Andrei-
Octavian Brabete, and Peter Pietzuch. Taming hyper-
parameters in deep learning systems. ACM SIGOPS
Operating Systems Review, 53(1):52–58, 2019.

[48] Luo Mai, Guo Li, Marcel Wagenländer, Konstantinos
Fertakis, Andrei-Octavian Brabete, and Peter Pietzuch.
KungFu: Making training in distributed machine learn-
ing adaptive. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pages
937–954. USENIX Association, November 2020.

[49] Luo Mai, Kai Zeng, Rahul Potharaju, Le Xu, Steve Suh,
Shivaram Venkataraman, Paolo Costa, Terry Kim, Sar-
avanan Muthukrishnan, Vamsi Kuppa, et al. Chi: A
scalable and programmable control plane for distributed
stream processing systems. Proceedings of the VLDB
Endowment, 11(10):1303–1316, 2018.

[50] Dahlia Malkhi, Lev Novik, and Chris Purcell. P2p
replica synchronization with vector sets. SIGOPS Oper.
Syst. Rev., 41(2):68–74, April 2007.

[51] Dahlia Malkhi and Doug Terry. Concise version vec-
tors in winfs. In Pierre Fraigniaud, editor, Distributed
Computing, pages 339–353, Berlin, Heidelberg, 2005.
Springer Berlin Heidelberg.

[52] Charles Masson, Jee E. Rim, and Homin K. Lee.
Ddsketch: A fast and fully-mergeable quantile sketch
with relative-error guarantees. Proc. VLDB Endow.,
12(12):2195–2205, 2019.

[53] Iulian Moraru, David G. Andersen, and Michael Kamin-
sky. There is more consensus in egalitarian parlia-
ments. In Proceedings of the Twenty-Fourth ACM Sym-
posium on Operating Systems Principles, SOSP ’13,
page 358–372, New York, NY, USA, 2013. Association
for Computing Machinery.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 837

[54] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael
Shi, Jianyu Huang, Narayanan Sundaraman, Jongsoo
Park, Xiaodong Wang, Udit Gupta, Carole-Jean Wu,
Alisson G Azzolini, et al. Deep learning recommen-
dation model for personalization and recommendation
systems. arXiv preprint arXiv:1906.00091, 2019.

[55] Andrew Newell, Dimitrios Skarlatos, Jingyuan Fan, Pa-
van Kumar, Maxim Khutornenko, Mayank Pundir, Yirui
Zhang, Mingjun Zhang, Yuanlai Liu, Linh Le, Bren-
don Daugherty, Apurva Samudra, Prashasti Baid, James
Kneeland, Igor Kabiljo, Dmitry Shchukin, Andre Ro-
drigues, Scott Michelson, Ben Christensen, Kaushik
Veeraraghavan, and Chunqiang Tang. RAS: continu-
ously optimized region-wide datacenter resource alloca-
tion. In Robbert van Renesse and Nickolai Zeldovich,
editors, SOSP ’21: ACM SIGOPS 28th Symposium on
Operating Systems Principles, Virtual Event / Koblenz,
Germany, October 26-29, 2021, pages 505–520. ACM,
2021.

[56] Even Oldridge, Julio Perez, Ben Frederickson, Nicolas
Koumchatzky, Minseok Lee, Zehuan Wang, Lei Wu, Fan
Yu, Rick Zamora, Onur Yilmaz, et al. Merlin: A gpu ac-
celerated recommendation framework. In Proceedings
of IRS, 2020.

[57] John Ousterhout, Parag Agrawal, David Erickson, Chris-
tos Kozyrakis, Jacob Leverich, David Mazières, Sub-
hasish Mitra, Aravind Narayanan, Diego Ongaro, Guru
Parulkar, Mendel Rosenblum, Stephen M. Rumble, Eric
Stratmann, and Ryan Stutsman. The case for ramcloud.
Commun. ACM, 54(7):121–130, jul 2011.

[58] D.S. Parker, G.J. Popek, G. Rudisin, A. Stoughton, B.J.
Walker, E. Walton, J.M. Chow, D. Edwards, S. Kiser,
and C. Kline. Detection of mutual inconsistency in
distributed systems. IEEE Transactions on Software
Engineering, SE-9(3):240–247, 1983.

[59] Aurick Qiao, Sang Keun Choe, Suhas Jayaram Subra-
manya, Willie Neiswanger, Qirong Ho, Hao Zhang, Gre-
gory R. Ganger, and Eric P. Xing. Pollux: Co-adaptive
cluster scheduling for goodput-optimized deep learn-
ing. In 15th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 21).

[60] General Data Protection Regulation. Regulation eu
2016/679 of the european parliament and of the council
of 27 april 2016. Official Journal of the European Union,
2016.

[61] Hansheng Ren, Bixiong Xu, Yujing Wang, Chao Yi,
Congrui Huang, Xiaoyu Kou, Tony Xing, Mao Yang,
Jie Tong, and Qi Zhang. Time-series anomaly detec-
tion service at microsoft. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining, KDD ’19, page 3009–3017,
New York, NY, USA, 2019. Association for Computing
Machinery.

[62] Yasushi Saito and Marc Shapiro. Optimistic replication.
ACM Comput. Surv., 37(1):42–81, mar 2005.

[63] Fred B. Schneider. Implementing fault-tolerant services
using the state machine approach: A tutorial. ACM
Comput. Surv., 22(4):299–319, dec 1990.

[64] Diane Tang, Ashish Agarwal, Deirdre O’Brien, and
Mike Meyer. Overlapping experiment infrastructure:
more, better, faster experimentation. In Bharat Rao, Bal-
aji Krishnapuram, Andrew Tomkins, and Qiang Yang,
editors, Proceedings of the 16th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data
Mining, Washington, DC, USA, July 25-28, 2010, pages
17–26. ACM, 2010.

[65] Tencent. WeChat. https://www.wechat.com/, 2022.
Accessed on 2022-05-06.

[66] Tensorflow. TensorFlow Recommenders Addons. http
s://github.com/tensorflow/recommenders-add
ons, 2021. Accessed on 2021-12-08.

[67] Robbert Van Renesse and Fred B Schneider. Chain repli-
cation for supporting high throughput and availability.
In OSDI, volume 4, 2004.

[68] Paolo Viotti and Marko Vukolić. Consistency in non-
transactional distributed storage systems. ACM Comput.
Surv., 49(1), jun 2016.

[69] Minhui Xie, Kai Ren, Youyou Lu, Guangxu Yang,
Qingxing Xu, Bihai Wu, Jiazhen Lin, Hongbo Ao, Wan-
hong Xu, and Jiwu Shu. Kraken: Memory-efficient
continual learning for large-scale real-time recommen-
dations. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage
and Analysis, SC ’20. IEEE Press, 2020.

[70] Le Xu, Shivaram Venkataraman, Indranil Gupta, Luo
Mai, and Rahul Potharaju. Move fast and meet deadlines:
Fine-grained real-time stream processing with cameo.
In 18th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 21), pages 389–405.
USENIX Association, April 2021.

[71] Zhiqiang Xu, Dong Li, Weijie Zhao, Xing Shen, Tianbo
Huang, Xiaoyun Li, and Ping Li. Agile and Accurate
CTR Prediction Model Training for Massive-Scale On-
line Advertising Systems, page 2404–2409. Association
for Computing Machinery, New York, NY, USA, 2021.

[72] Yuchao Zhang, Junchen Jiang, Ke Xu, Xiaohui Nie, Mar-
tin J. Reed, Haiyang Wang, Guang Yao, Miao Zhang,

838 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://www.wechat.com/
https://github.com/tensorflow/recommenders-addons
https://github.com/tensorflow/recommenders-addons
https://github.com/tensorflow/recommenders-addons

and Kai Chen. Bds: A centralized near-optimal overlay
network for inter-datacenter data replication. In Proceed-
ings of the Thirteenth EuroSys Conference, EuroSys ’18,
New York, NY, USA, 2018. Association for Computing
Machinery.

[73] Jianjun Zheng, Qian Lin, Jiatao Xu, Cheng Wei, Chuwei
Zeng, Pingan Yang, and Yunfan Zhang. Paxosstore:
High-availability storage made practical in wechat. Proc.
VLDB Endow., 10(12):1730–1741, aug 2017.

[74] Lixin Zou, Long Xia, Zhuoye Ding, Jiaxing Song, Wei-
dong Liu, and Dawei Yin. Reinforcement learning to
optimize long-term user engagement in recommender
systems. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining, KDD ’19, page 2810–2818, New York,
NY, USA, 2019. Association for Computing Machinery.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 839

	Introduction
	Low-Latency Model Updates in DLRSs
	DLRSs and model updates
	Reasons for low-latency model updates
	Our key idea and associated challenges

	Ekko System Architecture
	System model
	Architecture overview

	Efficient Peer-to-Peer Model Update
	Model update overview
	Parameter versions in DLRSs
	Log-less parameter synchronisation
	Making synchronisation efficient
	Parameter update caches
	Shard versions

	Implementation details

	SLO Protection Mechanisms
	SLOs in a DLRS
	SLO-aware model update scheduler
	SLO-aware priorities for model updates
	Scheduler implementation

	Inference model state manager
	Monitoring model healthiness
	Low-latency model state rollback

	Evaluation
	Test-bed experiments
	Update latency
	Performance breakdown

	Production cluster experiments
	Model updates
	SLO protection mechanisms

	Related Work
	Conclusion

