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Abstract

Systems for serving inference requests on graph neural net-
works (GNN) must combine low latency with high through-
out, but they face irregular computation due to skew in the
number of sampled graph nodes and aggregated GNN fea-
tures. This makes it challenging to exploit GPUs effectively:
using GPUs to sample only a few graph nodes yields lower
performance than CPU-based sampling; and aggregating
many features exhibits high data movement costs between
GPUs and CPUs. Therefore, current GNN serving systems
use CPUs for graph sampling and feature aggregation, limit-
ing throughput.

We describe Quiver, a distributed GPU-based GNN serv-
ing system with low-latency and high-throughput. Quiver’s
key idea is to exploit workload metrics for predicting the
irregular computation of GNN requests, and governing the
use of GPUs for graph sampling and feature aggregation:
(1) for graph sampling, Quiver calculates the probabilistic
sampled graph size, a metric that predicts the degree of par-
allelism in graph sampling. Quiver uses this metric to assign
sampling tasks to GPUs only when the performance gains
surpass CPU-based sampling; and (2) for feature aggrega-
tion, Quiver relies on the feature access probability to decide
which features to partition and replicate across a distributed
GPU NUMA topology. We show that Quiver achieves up to
35% lower latency with a 8% higher throughput compared
to state-of-the-art GNN approaches (DGL and PyG).

1 Introduction

Many internet, financial, and scientific applications rely on
serving inference requests on graph neural networks (GNNs):
examples include real-time fraud detection [28, 38], cyber-
attack prevention [45], product recommendations [37, 43],
complex dataset analysis [46], and particle simulations [32].

When receiving a GNN inference request from an appli-
cation, a GNN serving system samples the neighborhood
within a graph. It begins at a seed node, aggregates the fea-
tures associated with multiple levels of neighboring nodes,
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and passes the aggregated feature tensors to a deep neural
network (DNN) for the inference computation. Feature ten-
sors are often large, because they may constitute multi-modal
data such as images and text [3, 24]. If feature tensors ex-
ceed the capacity of a single server, they must be partitioned
across servers.

To support large-scale applications with many concurrent
inference requests, GNN serving systems must combine low
latency with high throughput. This is challenging due to the
irregular computation that GNN serving exhibits: it typically
involves large graphs with hundreds of millions of nodes and
edges [3, 13] that have a high degree of skew [23], i.e., a pro-
portion of graph nodes have significantly more neighbors
than others. When performing multi-level neighbor sam-
pling on these graphs for different serving requests, there
is a considerable variation in the number of sampled graph
nodes (from hundreds to millions), leading to variance in the
aggregated feature size (from MBs to GBs).

For example, sampling the Reddit graph [13], a typical
internet graph, for a batch of 1,000 requests can yield any-
thing from 4,000 to 300,000 neighbors, with feature tensors
ranging from 5 MB to 7 GB. When a system ingests hundreds
of thousands of inference requests per second (typical for
recommender systems [7] and fraud detection [39]), they
must sample 10s of millions of graph nodes and aggregate
100s of GBs of feature data.

Due to this irregular computation pattern, current GNN
systems (DGL [35], PyG [8], AliGraph [49] and others [9, 27,
42]) use CPUs for graph sampling and feature aggregation,
only relying on GPU acceleration for DNN inference. While
this reduces latency under different computational loads, it
limits throughput: e.g., with a latency target of below 30 ms,
DGL can only handle a few 1000s of requests per second.

While GPU-based sampling implementations have been
proposed [20, 31], they lead to unpredictable latencies: GPU-
based graph sampling is slower than its CPU counterpart
when processing requests that return fewer than 1,000 neigh-
bours or use a small request batch size below hundreds [6, 10].
This means that any system design that statically decides
to use GPUs for sampling suffers from latency spikes. In
addition, feature aggregation leads to a large amount of data



movement, which causes GPUs to be bottlenecked: aggre-
gating features on a larget real-world graph moves 100s of
GBs of data per second, thus exhausting PCle bandwidth.

Our goal is to explore a new design for a GNN serving
system that exploits GPUs for graph sampling and feature
aggregation for high throughout while meeting stringent la-
tency goals. Our key idea is for the system to take workload
properties of the GNN requests into account when allocat-
ing computation to resources. More specifically, the system
obtains easily computable workload metrics about the asso-
ciated graph data at runtime, which lets it decide (i) when
to allocate sampling tasks in a GNN request batch to GPUs
and (ii) how to place features across GPUs to avoid commu-
nication bottlenecks.

We describe Quiver, a distributed GPU-based GNN serv-
ing system that leverages workload metrics when processing
requests with low latency while achieving high throughput.
To serve GNN inference requests, Quiver is given a graph
with features, a sampling method, and a DNN. It replicates
this graph and partition its features on distributed servers.
Quiver then executes graph sampling, feature aggregation,
and DNN inference as computational tasks on GPUs and
CPUs in a streaming pipeline. It does this in a workload
aware fashion by making the following contributions:

(1) Workload-aware GNN sampling. To account for the
irregular computation of GNN sampling tasks, Quiver dy-
namically schedules sampling tasks onto GPUs and CPUs
based on a novel workload metric: probabilistic sampled
graph size (PSGS). PSGS is an estimate of the sampled neigh-
borhood size, and thus the computational load of a given
sampling task. With a large PSGS, the sampling computation
benefits from being scheduled on GPUs; with a small PSGS,
sampling is completed more quickly on CPUs.

To obtain PSGS, Quiver calculates the probability of sam-
pling the neighbors of each seed node in the graph, extends
the probabilities to multi-hop neighbors, and aggregates
them by combining all possible sampling paths.

When executing GNN requests, Quiver batches requests
and considers the PSGS estimates of different batch sizes and
the associated confidence intervals. To make the scheduling
decisions robust, it assigns the batch size with the highest
confidence to GPUs or CPUs based on the PSGS estimate.

(2) Workload-aware GNN feature placement. Quiver de-
cides on the assignment of feature tensors to GPUs based
on another novel workload metric: feature access probabil-
ity (FAP). FAP predicts the likelihood of a feature being ac-
cessed when sampled as part of a multi-hop neighbor. Quiver
uses FAP to determine which features to place close to par-
ticular GPUs while fully utilizing NVLink and InfiniBand.
To obtain FAP, Quiver calculates, for each feature, the
probability that a node is sampled as a one-hop neighbor, ex-
tends the probabilities to be sampled as a multi-hop neighbor,

and aggregates them when multiple neighbors are chosen
as seed nodes in a request batch.

The presence of NVLink and InfiniBand on GPU servers
significantly reduce the latency when fetching features. There-
fore, Quiver considers the GPU NUMA topology, in addition
to FAP, for feature placement, balancing partitioning and
replication on GPU servers: without NVLink, Quiver repli-
cates popular features on all GPUs, avoiding data fetches over
PCle; with NVLink, which can provide 600 GB/s between
GPUs, Quiver places more features on GPUs by partitioning
(instead of replicating) popular features.

To reduce the latency of feature aggregation, Quiver uses
one-sided reads to retrieve features: it bypasses CPUs, which
can become a bottleneck when coordinating a large number
of features to move to GPUs, and launches data movement
calls directly from GPU kernels. This also allows Quiver to
fully utilize the high bandwidth of NVLink and InfiniBand.

Our experiments show that Quiver outperforms state-of-
the-art GNN systems (PyG [8], AliGraph [49], DGL [35])
when serving 6 GNN models from the OGB benchmarks [18].
When the serving cluster is overloaded, Quiver still achieves
this latency threshold, while the baseline latency rises to over
1,000 ms. Quiver maintain low latency performance while
the number of servers is increased. For the MAG240M graph
dataset, Quiver achieves up to 6X higher throughput than
DistDGL [47] and P3 [9].

Quiver is available as open-source !, and its techniques for
workload awareness have seen adoption in industry GNN
serving systems [1, 8, 35].

2 Latency and Throughput in GNN Serving

We provide background on GNN serving and the challenges
in achieving low-latency, high-throughput processing. We
discuss the limitations of existing system designs and intro-
duce our goals for a low-latency GNN serving system.

2.1 GNN serving

GNN serving is used as part of many applications, e.g., recom-
mender systems [33] in which GNNs resolve the cold start
issue for recommendations; fraud detection systems [39]
in which GNNs detect long-range dependencies between
transactions; smart transport [12] in which GNNs optimize
recommended routes; and applications in science [36], e.g.,
by using GNNs to predict the positions of particles over time
in particle simulations.

Fig. 1 gives shows the GNN serving computation, assum-
ing a 2-layer sampling function. After receiving a GNN re-
quest with seed node 0, the system samples its neighbors and
returns the layer-1 sampled nodes (1, 3, 5). When it reaches
the layer-2 neighbors, it probabilistically samples node 7. Af-
ter that, it collects the features for all sampled nodes (layer 0,
node 0; layer 1, nodes 1, 3, 5; layer 2, node 7), potentially from
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Fig. 1: Overview of GNN serving computation
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different devices. It then concatenates the collected features,
and the feature tensor is used for DNN inference. Finally, the
inference results are returned to the user.

In practice, GNN serving must handle large graphs with
many features: e.g., MAG240M [17], a heterogeneous aca-
demic graph dataset, has 240 million graph nodes, 1.7 billion
edges, and 768-dimensional feature vectors for each node.
Our production internet graph dataset has billions of graph
nodes, with feature sizes totalling tens of TBs.

Therefore, features must be partitioned and distributed
across servers. Each server comprises of multiple GPUs and
dozens of CPU. Devices are inter-connected by a heteroge-
neous distributed NUMA fabric with NVLink, PCle, Ethernet,
and InfiniBand links [25].

2.2 Challenges in large-scale GNN serving

Despite the processing scale, GNN requests must be served
with low latency. For example, recommender systems must
process thousands of requests within 15 ms [48], stream
processing handles millions of requests in milliseconds [30,
40], fraud detection systems must handle millions of requests
within 20 ms [39], and route planning applications process
tens of millions of requests within 100 ms [15].

Due to the irregularity of the computation, it is challeng-
ing to achieve these latency goals. Real-world graph exhibit

a high degree of skew in the number of neighbors associ-
ated with the graph nodes. When performing multi-layer
neighbor sampling for a batch of GNN requests, systems may
process substantially varying numbers of sampled neighbors
and aggregated feature sizes.

We show this variability in sampled neighbors for two
real-world graphs when handling a batch of 100,000 GNN
requests. Each request requires sampling 25 layer-1 neigh-
bors and 10 layer-2 neighbors. Fig. 2a shows that, for the
Reddit graph [13], the number of sampled neighbors ranges
from 3,000 to 3,000,000, with the majority falling between
2,000,000 and 2,800,000. For the Product graph [41], the num-
ber of sampled neighbors ranges from 4,000 to 2,600,000.

This variability makes it challenging to map the sampling
computation to a single type of device: CPU-based sampling
provides predictably low latency, as CPUs can efficiently ac-
cess graph data distributed across a large amount of memory,
but their limited parallelism reduces throughput; in contrast,
GPU-based sampling achieves higher throughput, but only
when the GNN request samples many neighbors. A large
number of neighbors fully utilizes the high degree of paral-
lelism of GPUs and amortizes their higher start-up and data
movement costs.

In addition to graph skew, the number of sampled neigh-
bors is highly sensitive to the graph sampling configura-
tion (i.e., the numbers of sampled layers and the number of
neighbors per layer). Fig. 2b shows that, after adjusting the
sampling configuration to include 50 layer-1 neighbors and
35 layer-2 neighbors, the distribution of sampled neighbors
changes substantially: for the Reddit graph, the number of
sampled neighbors now ranges from 10 million to 175 mil-
lion; while for the Products graph, it varies between 2 million
and 150 million, with the majority around 5 million.

We also examine the variability in the total size of aggre-
gated features. Fig. 3a shows that the aggregated feature size
for the Reddit graph ranges from 36 GB to 800 GB; for the
Product graph (Fig. 3b), it ranges from 3 GB to 110 GB.

When using GPUs, all these features must be loaded into
GPU memory for subsequent DNN computation. Transfer-
ring these features over the PCle bus (with 16-32 GB/s band-
width) incurs latencies from hundreds of milliseconds to tens
of seconds. Such latencies are significantly higher than the
GPU-based DNN computation time (usually in the tens of
milliseconds), making feature aggregation a bottleneck.

2.3 GPU-based GNN serving

GNN serving systems require predictable low latency pro-
cessing when exploiting GPUs. Existing GNN systems (e.g.,
PyG [8], DGL [35], GNNLab [42], BGL [27]) use GPUs for
feature aggregation, and NextDoor [20] uses GPUs for ac-
celerating graph sampling. These systems however suffer
limitations when using GPUs for serving:

Predictable latency on GPUs. Proposals to exploit GPUs
for GNN sampling exist. NextDoor [20] necessitates a large



batch of seed nodes to fully utilize GPUs, but adversely affects
latency performance in GNN serving.

DNN serving systems such as Clipper [6] and Clockwork [11]
use dynamic batching to reduce request latencies. They mon-
itor the incoming DNN inference requests and construct
dynamically-sized batches that can be processed by a given
latency deadline. Such approaches, however, assume a con-
stant computation and communication effort for a single
request that targets a given DNN model: for a DNN infer-
ence request, the input data (e.g., image or text) is of a fixed
size and leads to the same amount of activation data. This
predictability makes it easier to aggregate requests until a
given latency target is reached.

As we have shown in §2.2, GNN inference requests, how-
ever, require varying computational and communication
resources. Since batches contain different graph seed nodes,
there is a variance in the size of sampled graph nodes and
thus aggregated features. This irregular computation makes
simple batching techniques that assume a fixed cost per in-
ference request infeasible.

Feature assignment to GPUs. Since feature data in GNN
serving is large (see §2.2), the data must be distributed across

GPU servers. Existing GNN systems, including DSP[4], BGL[27],

GNNLab[42], cache popular features in GPUs, which requires
a decision on feature popularity: GNNLab[42] estimates fea-
ture popularity by counting the feature’s access frequency
during model training; BGL[27] ranks feature popularity
based on their node in/out degrees in the graph.

However, such approaches are ineffective for GNN serving
scenarios. When allocating features to servers, GNN serving
systems cannot exploit prior information from training: the
seed nodes during training are selected deliberately to follow
a uniform distribution, which maximizes model accuracy. In
contrast, seed nodes in GNN inference requests follow real-
world skewed distributions [23]. Training dataset also only
includes a small subset of potential seed nodes (20%-30% in
the OGB benchmark).

In addition, any method for feature assignment in GNN
serving must take multi-layer neighbor sampling into ac-
count, otherwise the calculated feature popularity will devi-
ate from those observed when serving GNNs.

3 Workload Aware GNN Serving

Next we introduce our idea of workload-aware GNN serv-
ing (§3.1) and give an overview of Quiver’s design (§3.2).

3.1 Overview

Our analysis in §2.2 reveals that the effectiveness of using
GPUs for GNN serving depends on the properties of the
graph. Therefore, we want to explore a design for a GNN
serving system that is workload aware, i.e., the system makes
decisions regarding the compute and data allocation to GPUs
that depend on the graph properties.

Open challenges when realizing this idea is to decide
(i) how and (ii) when to collect information about the work-
load. Our approach is to pre-compute workload metrics that
capture properties of the graph used for GNN serving. If the
system pre-computes appropriate metrics at deployment
when the graph data is available, it can use the metrics
for principled decision-making, both at deployment time
when having to partition feature data from the graph across
GPU servers and at runtime when assigning GNN infer-
ence computation to GPU and CPU devices. The cost of
pre-computation of these metrics can be amortized across
the execution of GNN requests.

We exploit two workload metrics in Quiver’s design:

Probabilistic sampled sub-graph size (PSGS). For a GNN
request, the system must predict the computational load of
the request to make a decision whether to execute the GNN
sampling computation on a GPU or CPU: if the sampled
neighborhood yields many nodes, GPU-based sampling is
more efficient; if it results in few nodes, the sampling task
can be executed by a CPU core with lower latency.

The PSGS metric estimates the number of sampled nodes
for a given seed node in a graph, and the system can use it
to allocate sampling tasks to the most appropriate device.
It can be pre-calculated efficiently by GPUs(see §4.1). The
pre-calculated values are stored in a lookup table, which fits
into GPU memory (see §6.4) and is consulted by the system
at runtime.

Feature access probability (FAP). The bulk of the data
movement when serving GNN requests is due to the access
of feature data. To prevent feature collection from becoming
a communication bottleneck, the system must place features
close (in terms of the NUMA/network topology) to the GPUs
that access them. If a feature is popular, i.e., it has a high
probability of access for any given GNN request, it should
place within the NUMA/network topology in such a way
that allows for lower latency access.

The FAP metric estimates the access likelihood of any fea-
ture data in the graph. It is calculated by GPUs by implement-
ing graph sampling as sparse matrix multiplication (see §5.1).
Based on the FAP value, the system can place feature data
across multiple levels of the NUMA/network topology (from
lowest to highest latency access): (1) local GPU; (2) GPU in
the same server, interconnected via NVLink [16]; (3) GPU
in the same server, interconnect via PCle; (4) GPU in the
different server, interconnect with InfiniBand.

3.2 Design

Next describe the design of Quiver, a distributed GNN serv-
ing system for GPUs that uses the PSGS and FAP metrics
for workload awareness. Figure 4 shows the design: Quiver
takes a graph topology and sampling configurations as in-
put at deployment time. These are used to pre-calculate the
PSGS @ and FAP metrics @, which is done efficiently by
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parallelizing the computation using GPUs (§4.1). For the
PSGS metric, Quiver analyzes the relationship between the
PSGS value and latency measurement of different emulation
batches using a serving workload generator. It generates the
relationship between PSGS and latency measurement, which
allows Quiver to choose PSGS that can guide the assignment
of GNN sampling to GPUs and CPUs.

After the FAP metric is calculated, a feature placement al-
gorithm @ uses it, in combination with information about the
NUMA/network topology of the deployment, as input to de-
cide on the feature assignment. It sorts the features based on
the FAP metric and partitions and replicates features across
the topology: it partitions popular features among GPUs,
connected through NVLink and InfiniBand, thus caching
popular features in GPUs and reducing PCle traffic; for GPUs
without NVLink and InfiniBand, Quiver replicates popular
features to increase locality of access.

When processing GNN inference requests, a hybrid sched-
uling algorithm @ dynamically assigns graph sampling tasks
to GPUs and CPUs. It performs a PSGS lookup for each GNN
request, and only assigns the request to GPUs when it im-
proves throughput without increasing latency.

GNN requests are processed by a hybrid GNN pipeline @,
which efficiently exploit a large number of GPU and CPU
cores in executing different GNN computation stages (i.e.,
graph sampling, feature aggregation, and DNN inference),
achieving high-throughput GNN request process.

As part of the pipeline, the features needed to execute
feature aggregation tasks are collected by a one-sided read
engine @. If a feature can be accessed via NVLink and In-
finiBand, the engine directly reads the feature from a peer
GPUs/CPUs, avoiding interrupting CPUs and minimizing
memory copies.

4 Workload-Aware GNN Sampling

In this section, we introduce the computation of PSGS (Sec-
tion 4.1), describe how PSGS contributes to GNN sampling
in achieving consistent latency performance (Section 4.2),
and discuss how GNN serving pipeline can achieve high
throughput (Section 4.3).

min(|N{ (vp)l, L)
=min(1,1) =1

min(|NV;F (v3)l, 1)
=min(1,2) =1

Layer-1: q;[3] Layer2: q,[3]

Layer-0: qo[3]

Qz-nops[3] = qo[3] + 41 [3] + q2[3]
= qo[3] + min(INY (v3)|, ,1)8(3,3) + min(IN;" ()1, 1) 6(3,0)

[

Layer-0

Layer-1 Layer-2

Fig. 5: Probabilistic Sampled Sub-graph Size of Node 3
4.1 Estimation of probabilistic sampled subgraph size

The estimation of the PSGS must account for the configura-
tion of a probabilistic multi-layer neighbor sampling method.
In the following, we use an example to describe how this
configuration is involved in computing the PSGS and then
give a formal definition.

Example. Fig 5 shows an example of the calculation of the
PSGS of node 3 (Q2-hops[3])- Assume the maximum sample
size of hop-1 and hop-2 are 2 and 1 respectively. Q2_pops[3]
is the sum of q,[3], q;[3] and q,[3], which represents the
expected subgraph size at hop-0, hop-1 and hop-2 respec-
tively.

qo[3] is always the subgraph with only the seed node, so
the size is 1. The size of the hop-1 subgraph is 1, which is
the minimum of the hop-1 neighbourhood size of 2 and the
maximum sample size of 1, so q [3] is 1. The probability that
transits from node 3 to node 0 is 1/2 and the subgraph size
from 0is 1,s0q,[3]is1x 1/2=1/2.
Construction algorithm. Specifically, the PSGS in k-hop
sampling for a node i, denoted as Qx_nop[i], is defined as:

QK—hops [l] = ZI[fzo (e} [l] s where

1, k=0
qk[i] = . " ..
Soyent (@ min(INF @)1 1) (i) .k >0

qo [1] refers to the probability sampled sub-graph size(PSGS)
that each point can sample at the 0™-layer, which is essen-
tially the point itself. Therefore, q,[i] = 1. q; [i] represents
the PSGS of node i at the k™-hop.

Ny (v;) defines the set of the k"-hop out-neighbors of
node i, which is the set of all nodes that can be sampled from
node i in the k-hop. & (i, j) is the probability of sampling
v; from v; at the k'™-hop (i.e., the transition probability). Both
N}, (v;) and 8 (i, j) can be obtained by calculating the kth-
order weighted adjacency matrix A% = ¢ A. N (v;) is the
set of column indices corresponding to all non-zero elements
in the i-th row of matrix A¥, and 8¢ (i, j) = AF[i][j]

The output of this algorithm, Qg _y,p. is a lookup table
stored in memory as an array, with a space complexity of
O(]V]). The time complexity for querying is O(1).
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Computation cost. When analyzing sampled sub-graph
size, Quiver must compute the PSGS metric for each graph
node. For the entire graph, the dominating computation cost
lies in finding the set of K-hop out-degree neighbors of each
node and the transition probabilities between each node in
the graph at the K-hop. This requires calculating the K
order weighted adjacency matrix AK. The time complexity of
this calculation using a CPU for serial matrix multiplication
is O(k|V]?).

Since most real-world graphs are sparse (e.g., the adja-
cency matrix is sparse) citeevidence, Quiver implements this
process using a GPU. It employs CUDA’s sparse matrix mul-
tiplication operator, which reduces the time complexity to
O(k|V||E|), where |E| << |V|? in sparse matrices. When
analyzing a graph with hundreds of millions of graph nodes,
the PSGS computation on a GPU can finish within minutes.

4.2 PSGS-guided hybrid sampling

Quiver can support GPUs to achieve predictable latency per-
formance with the aid of PSGS. The main idea is to analyze
the relationship between the PSGS and request processing
latency offline. After being deployed, Quiver can monitor
the seed nodes of GNN requests and estimate the PSGS of
these requests. With the estimated PSGS, Quiver predicts the
latency required for processing the requests. It assigns the re-
quest processing to GPUs only when it enhances throughput
with predictable low latency.

4.2.1 PSGS and processing latency We aim to predict
the relationship between PSGS and request processing la-
tency. To do this, we generate multiple GNN request batches
with varying PSGS values. We then measure the process-
ing latency of these batches in a hybrid sampling pipeline,
shown by Figure 6(a). In this pipeline, graph sampling can be
assigned to either CPUs or GPUs, while feature aggregation
and DNN inference are assigned exclusively to GPUs.
Quiver is designed to ensure that offline latency measure-
ments are accurate and consistent with those in a serving
scenario. To achieve this, Quiver incorporates a serving work-
load generator that conducts latency measurements when
both CPUs and GPUs are near full utilization, with no queu-
ing in the pipeline. The serving workload generator continu-
ously produces batches until there are a sufficient number

of latency measurements for each PSGS, thus ensuring the
reliability of the measurements.

After gathering an adequate number of latency measure-
ments, Quiver generates a figure that illustrates the relation-
ship between PSGS and the end-to-end processing latency
of the hybrid sampling pipeline, as demonstrated in Figure
6(b). In this figure, we visualize both the average latency and
the maximum latency achieved when using either GPUs or
CPUs for GNN sampling. The maximum latency measure-
ment enables Quiver to evaluate how to select a PSGS that
complies with a latency bound, while the average latency
measurement allows Quiver to choose a PSGS that targets a
specific latency goal.

In the figure mentioned above, we observe the latency
measurement lines intersect at 4 points: (a) CPU preferred.
Point @ is where the CPU maximal latency intersects the
GPU average latency. For any GNN request with a PSGS
smaller than the CPU preferred point, this request can be
completed faster on CPUs, even in the worst-case scenario.
(b) GPU preferred. Point @ is where the CPU average latency
intersects the GPU maximal latency. For any request with a
PSGS larger than this point, sampling can be completed on
GPUs with enhanced latency and throughput performance.
(c) Latency preferred. Point @ is where the CPU maximal
latency line intersects the GPU maximal latency line. If users
prioritize bounding latency performance, they can select this
cross point to guide the hybrid sampling: any GNN request
with a PSGS smaller than the latency preferred point is as-
signed to CPUs. If larger, it is assigned to GPUs. (d) Through-
put preferred. Point @ is where the CPU average latency line
intersects the GPU average latency line. If users prioritize
increasing throughput, they can choose this cross point to
guide the hybrid sampling process.

4.2.2 GNN serving with PSGS In the following, we ex-
plain how to utilize the selected PSGS value to enable ef-
ficient GNN serving while maintaining predictable perfor-
mance. During GNN serving, the Quiver system continu-
ously batches incoming GNN requests, completing the pro-
cess once a batching deadline is reached. The Quiver system
then iterates through all seed nodes within this batch, ac-
cumulating their PSGS estimations. If the accumulated sum
is less than the user’s chosen PSGS value, the batch is as-
signed to CPUs for GNN sampling completion; otherwise,
it is assigned to GPUs. This approach ensures that GPUs
can deliver predictable low latency, while simultaneously
directing the majority of the graph sampling workload to
GPUs, thereby increasing throughput.

4.3 High-throughput hybrid pipelines

Designing high-throughput hybrid pipelines for GNN serv-
ing introduces several challenges. In the following, we dis-
cuss our design choices that address them:
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(1) Multiplexing GNN pipelines in a processor. The pro-
cessing of GNN requests require both compute-intensive
stages (e.g., for graph sampling and DNN inference) and
communication-intensive stages (e.g., for feature aggrgega-
tion). A GNN pipeline can be thus interrupted for commu-
nication, leaving the processor idle. To address this, Quiver
multiplexes multiple pipelines in one processor (e.g., with
each pipeline running in a CUDA stream). Such a design
allows the processor to process multiple requests concur-
rently, overlapping their computation and communication
tasks [22].

(2) Sharing the queue for GNN pipelines in a processor.
GNN requests with irregular computation patterns lead to
diverse processing times on GPUs. To avoid dispatching
batches to a slow pipeline, incurring significant queuing
delays, Quiver creates a queue shared by the pipelines on
the same processor. These pipelines compete for requests in
the shared queue, avoiding queuing delays and stragglers.

(3) Sharing the graph for GPU pipelines in a server.
GNN requests sample large graphs, which consumes substan-
tial memory (e.g., 100s of GBs). GPUs, however, have limited
memory (typically 16 GB-80 GB). To address this, Quiver
replicates the graph topology in each server and makes all
the GPU pipelines share this graph.

To make graph sharing efficient, we implement the shared
graph using the GPU’s unified virtual addressing (UVA) mem-
ory. Each graph partition is implemented as a pinned memory
block and directly mapped to the GPU’s memory space.

5 Workload-aware Feature Placement

In this section, we describe how Quiver computes the feature
access probability (§5.1), places features on GPU servers (§5.2),

and uses efficient one-sided GPU reads to access features (§5.3).

5.1 Estimation of feature access probabilities

The estimation of the feature access probability (FAP) is
based on the following observation: a node’s feature is fetched
from memory when the node is in the k-hop sampling sub-
graph of input seed nodes. Consequently, the more subgraphs
a node feature is involved in, the higher the probability that
the node feature is accessed. In the following, we use an

example to explain the computation of this probability and
then present a formal definition.

Example. Consider node 3 in the directed graph with equal
edge weights shown in Fig. 7. We want to compute the prob-
ability of node 3 being sampled as a neighbor within 2 hops
from other nodes, denoted as p27h0p5[3]. It is the sum of
pol3], p;[3], and p,[3], which represent the probabilities
that node 3 is sampled within the 0™, 1%, and 2™ layers,
respectively.

Specifically, p,[3] = % is the probability that node 3 is
selected from the 6 nodes as a seed node; p,[3] is the sum
of the probabilities that node 3 is sampled from its one-hop
neighbors (nodes 0 and 3). The probability that node 3 is
sampled from node 0 is # X 3, and the probability from
node 3 is % x 1; and p,[3] is the probability that node 3 is
sampled from its two-hop neighbor (node 4) via its one-hop
neighbor (node 0). The probability that node 4 is sampled
at the 0™-layer is é and the probabilities of transitioning
from node 4 to node 0 and from node 0 to node 3 are 1 and
3. respectively. Thus, p,[3] is £ X 1 X § = 7.

FAP definition and computation. Generally, the FAP of
a node v sampled within K-hops neighbor is computed re-
cursively as follows: Px_pops[i] = Zf:o pili] , where

. c, k = 0
plil = ; ..
ZU]'ENI:(U,') pO(J) 5]((]’ l)a k >0

poLi] is the probability that node i is sampled at the 0%-layer
and le‘:/‘ qoli] = 1, ie., that node i is directly requested
as a seed node. If the probability of each node becoming a
seed node is equal, then p,[i] = ﬁ Users can also set p, [i]
based on the actual dataset; p;[i] denotes the probability
that node i can be sampled from other nodes in the k™-hop.

N, (v;) defines the set of k™-layer in-neighbors of node i,
which is the set of all nodes that can reach node i in the
k'"-hop. N, (v;) can be obtained by calculating the k'™-order
weighted adjacency matrix A* = [TFA. N, (v;) is the set of
row indices corresponding to all non-zero elements in the
i-th column of matrix AX. This requires calculating the K"
order weighted adjacency matrix AX. Using the previous
analysis from §4, the time complexity of this calculation
can be optemize by CUDA’s sparse matrix multiplication
operator to O(k|V||E|).

5.2 Feature placement

Quiver uses the FAP metric to place popular features strategi-
cally on GPUs. A primary objective of feature placement is to
enable GPUs to take advantage of low-latency connectivity,
such as NVLink and InfiniBand, to their peer GPUs. This
allows GPUs to achieve low-latency access to features when
aggregating features.

Minimizing the latency of feature aggregation presents
a unique challenge: the features data is large and must be
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partitioned across servers. The feature aggregation latency is
determined when all sampled features by a request become
available in the GPU, allowing it to initiate DNN inference.
In other words, this latency is equivalent to the tail latency
of the last feature becoming available. This latency-driven
minimization target makes the feature placement problem
different from GNN training, which instead focuses on cache
hit ratios (e.g., GNNLab [42], AliGraph [49] and BGL [27]).

Impact of connectivity. Next, we derive insights from ex-
amples that show how NVLink and InfiniBand connectivity
impact feature placement.

(a) Without NVLink. Fig. 8(a) shows feature placement in a
server without NVLink. There are 5 features, and their FAP
metrics decrease with their ID (i.e., feature 0 has the highest
FAP value; feature 5 has the lowest). We assume that a server
has two NUMA nodes, each with 1 CPU and 2 GPUs. The
NUMA nodes are connected using a fast processor intercon-
nect (e.g., UPI), and the CPU and GPU are connected using
PCle. The GPU’s high-bandwidth memory (HBM) can hold
one feature, and the CPU memory can hold two features.

In this scenario, feature placement is not NVLink aware,
and optimizes for data locality only. Consequently, it repli-
cates feature 1 on all GPUs and evenly partitions the remain-
ing features on the CPUs. Consider a GNN request that needs
to aggregate features 1 and 2: the feature aggregation latency
is determined by the latency of fetching feature 2 from the
CPU to the GPU over the PCle.

(b) With NVLink. Fig. 8(b) shows an improved feature place-
ment that exploits NVLink. As NVLink offers high bandwidth
and low data transfers to GPUs within the same NUMA node,
fetching a feature over NVLink can be up to 50% faster than
over PCle. With this in mind, instead of replicating the most
popular features on all GPUs, we can partition popular fea-
tures and assign them to GPUs evenly. For example, feature 1
is placed in GPU 0 and feature 2 is placed in GPU 1. Since
accessing data across NUMA nodes is costly, we can replicate
features 1 and 2 in the GPUs in both NUMA nodes, still opti-
mizing for data locality. This optimized feature placement

strikes a balance between replication and partitioning, yield-
ing improved feature aggregation latency. Consider again
the request that must aggregate features 1 and 2: now GPU
0 fetches feature 2 from its peer GPU 1 over NVLink, while
GPU 1 fetches feature 1 from GPU 0 over NVLink. This
avoids fetching feature 2 over the slower PCle bus, reducing
aggregation latency.

(c) Without InfiniBand. Fig. 8(c) shows a scenario in which
features must be placed across servers. Existing distributed
feature placement methods (e.g., GNNLab, AliGraph, and
BGL) assume that cross-server communication is slow (usu-
ally provided by Ethernet). They optimize for data locality,
replicating popular features 1 and 2 on both servers and
leaving the remaining features in the local disk.

Consider a GNN request that aggregates features 1, 2, and
3: feature 3 must be fetched from disk, incurring slow I/O
operations, which increase feature aggregation latency.

(d) With InfiniBand. By making the placement InfiniBand
aware, we can trade data locality for a fast InfiniBand link,
thus partitioning popular features instead of replicating them.
We assign features 1 and 2 to server 0 and the other popular
features 3 and 4 to server 1.

When executing a GNN request that aggregates features 1,
2, and 3 on a GPU, the GPU can take advantage of the In-
finiBand link by fetching feature 3 from the peer server.
InfiniBand offers a bandwidth of up to 800 Gbps, which is
80x% faster than conventional 10-Gbps Ethernet and SSDs.
Consequently, feature aggregation latency is substantially
improved compared to caching features locally.

Placement algorithm. We design an algorithm that takes
into account NVLink/InfiniBand connectivity when plac-
ing features, minimizing feature aggregation latency. Its key
steps are as follows: (i) Sort features: the placement algo-
rithm begins by sorting all features based on their FAP values.
The features have IDs in the range of 0 to N; (ii) Analyze
feature capacity per GPU: the algorithm considers num-
ber of features that can be placed in a GPU (denoted as the
feature capacity). For this, Quiver requires the user to provide
the number of GPUs G in a server, the number of features
that can be placed in a GPU N, and the number of NUMA
nodes C per server (We only consider the case in which GPUs
are connected via NVLink in a NUMA node.) The result-
ing feature capacity is gNg; (iii) Analyze feature capacity
per server: the algorithm analyzes the feature capacity per
server, denoted as Ni. If InfiniBand is used, Ny = %Ng + N,
where N, represents the number of features that can be
placed in server memory; otherwise, N; = %Ng + N, + Ny,
where Ny denotes the number of features that can be placed
on disk; (iv) Partition and replicate (inter-server): based
on Nj and the number of servers S, the algorithm partitions
the most popular features, with each partition containing
N; features. It returns the most popular partition and repli-
cates the features with IDs in the range of [0 : S X Ns] in



each server. Finally, it partitions the features with IDs in
the range of (S X N; : NJ]: for each partitions, it sorts them
according to their FAP values and initially places the features
in the server memory. After exhausting memory, it places
the remaining features on disk; and (v) Partition and repli-
cate (intra-server): for each server, the algorithm replicates
the features in the range of [0 : gNg] across NUMA nodes.
Within each NUMA node, it partitions the features, evenly
assigning them to GPUs, so that each GPU has a similar
aggregated FAP value.

5.3 Feature aggregation with one-sided reads

Quiver uses GPU kernels that can leverage efficient one-sided
reads to access remote features over NVLink/InfiniBand. We
describe how to support one-sided reads on GPUs and how
to make them efficient.

Supporting one-sided reads on GPUs. Quiver supports
one-sided reads on GPUs through a feature lookup table,
which converts feature IDs to their physical memory ad-
dresses on a remote device. This feature lookup table is com-
puted when executing the feature placement algorithm, and
it can be accessed efficiently by the GPU kernels through
UVA. Maintaining a feature lookup table incurs a low mem-
ory overhead: the number of rows in the table grows with
the number of graph nodes. Even wit a large-scale graph
that has hundreds of millions of graph nodes, the table only
consumes several hundreds of MBs of memory.

Making one-sided reads efficient. Quiver uses GPU ker-
nels with one-sided reads to access features that are sparsely
distributed in memory spaces, i.e., their memory locations
vary because the features are randomly sampled. To increase
the efficiency of one-sided reads with sparse features, Quiver
adopts two optimizations:

(i) Zero-copy optimization. Quiver implements one-sided reads
by leveraging the zero-copy capabilities in CPU-GPU and
GPU-GPU communication. To support zero-copy access to
features on a peer GPU, Quiver registers the features as
pinned memory using cudaHostRegister(), which allows
CUDA kernels on local GPUs to access them directly. Before
reading a batch of features from registered host memory, the
features are sorted according to their addresses, which leads
to better locality during feature address translation on GPUs.

To support zero-copy access over InfiniBand, Quiver reg-
isters the features as a memory region using ibv_reg_mr().
It then uses ibv_post_send() for one-sided RDMA reads,
which avoids interrupting the CPU. Quiver allocates multi-
ple queue pairs to parallelize RDMA reads, which improves
throughput. Instead of setting the signal field and polling
the completion queue for each read, Quiver performs it once
for each batch, which further reduces latency.

(ii) TLB optimization. RDMA requires address translation in
the InfiniBand NIC, but random memory accesses lead to
TLB misses. Assuming the features have memory addresses

Dataset Nodes Edges Feature size
ogbn-products 245M  123M 100
ogbn-papers100M  111M 1.6B 128
ogbn-mag240M 240M  1.72B 768
Reddit 232K 114M 300
LiveJournal 4.8M 69M N/A
ogbn-products+ 245M  123M 10000

Tab. 1: Evaluation datasets

ranging from 2k to 2k + 1 on the same memory page, when
reading features e.g., at addresses <2, 3, 10, 11>, the reading
order of <2,10, 3, 11> cause 4 TLB misses, whereas the or-
der of <2, 3,10, 11> results in only 2 TLB misses. Therefore,
Quiver sorts all feature reads by their memory addresses,
which allows adjacent reads to be clustered together to im-
prove TLB hit rates of the NIC.

6 Evaluation

We evaluate the performance of Quiver experimentally. Quiver
is written in C++, CUDA C, and Python. It can serve GNN
models written in PyG and DGL (PyTorch). Our evaluation
aims to answer the following questions:

e How does Quiver’s workload-aware approach compared
to other GNN serving implementation in terms of latency
and throughput? (§6.2)

e How does Quiver scale with more GPUs and servers? (§6.3)

e Does Quiver’s PSGS metric adapt to different request in-
gestion rates? (§6.4)

e Does Quiver’s FAP metric achieve better performance for
feature access compared to existing algorithms? (§6.5)

e Does Quiver’s one-side read strategy achieve higher through-
put when collection features? (§6.6)

e How is Quiver impacted by communication links? (§6.7)

6.1 Evaluation setup

Testbeds. We use the following hardware in our experi-
ments: (i) Cluster testbed has 3 servers, each with 2 or
4 NVIDIA A6000 GPUs (with pairwise NVLink 3.0 links)
and AMD EPYC 7402P 24-core CPUs with 128 GB of host
memory. The network links connections are 100-Gbps In-
finiBand; and (ii) Cloud testbed has 4 cloud VMs, each with
8 NVIDIA V100 GPUs (16 GB of RAM, with NVLink in a
group of 4 GPUs) and Intel Xeon Gold 5220R (2.2 GHz) CPUs
with 448 GB of host memory. The network is 10-Gbps Ether-
net.

Datasets. We use 6 public graph datasets (Tab. 1) : (i) ogbn-
products [19], a medium graph with product relations at
Amazon; (ii) Reddit, a medium graph of social communi-
ties; (iii) ogbn-papers100M, a large graph of paper citation
networks; (iv) ogbn-mag240M, a large graph of paper cita-
tion networks; (v) Live Journal, a medium graph of journal
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Fig. 9: Throughput vs. latency of GNN request serving

communities; and (vi) ogbn-products+, the Amazon prod-
uct graph extended to have large features, matching our
production workloads.

GNN models. We choose 2 popular GNN models: (i) Graph-
SAGE [14], with k-hop neighbour sampling without replace-
ment (hidden dimension of 256); and (ii) Graph Attention
Network (GAT) [34] with 4 attention heads. For both models,
we use a local batch size of 1024 on each worker. All models
are implemented using PyG and PyTorch. We also evaluated
other GNN models (GraphSaint [44] and ClusterGCN [5]),
observing similar results (omitted due to space limitations).

Baselines. We compare Quiver against two state-of-the-art
GNN systems, PyG [8] (v2.0.1) and DGL [35] (v0.7.0). We
extend these systems to process GNN requests (i.e., using the
test mode of PyG and DGL). Since Quiver supports models
imported from PyG and DGL, we adopt their task imple-
mentations (e.g., for graph sampling, DNN inference) when
possible. This way, performance differences can be attributed
to the different request processing and feature placement.

Note that PaGraph [26], BGL [27] and GNNLab [42] sup-
port training only, and we could not extend them to sup-
porting GNN serving. However, we re-implement the pro-
posal by PaGraph for feature placement. Since P3 [9] is not
open-source, we also re-implement its approach in Quiver,
reproducing its published performance results. While we
exclude AliGraph [49] from our end-to-end experiments, be-
cause it does not support PyTorch, we implement its feature
placement approach.

Request workload. We launch multiple client processes
that continuously produce GNN requests. Each request ran-
domly samples input nodes with the out-degree as the weight,
which is representative of real-world serving workloads.

6.2 Throughput and latency

To assess end-to-end performance, we measure the through-
put and latency of serving a GNN model for a given dataset.
We evaluate three scenarios: (i) users want the highest possi-
ble throughput with a given latency target; (i) users want the
lowest possible latency; and (iii) users want high throughput
when serving large GNN models.

Throughput vs. latency. First, we compare Quiver with
PyG and DGL (with both CPU and GPU sampling) in terms
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of throughput and latency running on one server with 2
GPUs from the cluster testbed. We vary the batch size from
8 to 1024 to generate different scale workload and record
the throughput and 99" latency percentile. Fig. 9 shows the
throughput/latency plot when processing GNN requests. We
observe that the PyG’s latency increases substantially with
a higher throughput to over 1 sec. DGL with CPU sampling
behaves similarly, but DGL with GPU sampling achieves a
higher throughput of just above 50,000 reqs/sec. In contrast,
Quiver maintains latencies below 13 ms, despite processing
requests at a peak throughput of 255,000 reqs/sec , when
we have reached system full load, with CPU utilization at
95-100% and GPU utilization at 80-85%. Since Quiver only
allocates sampling tasks that benefit from GPU processing to
GPUs, while avoiding data movement bottlenecks between
GPUgs, it achieves a substantially higher throughput without
a latency penalty.

Strict vs. loose latency bounds. Quiver supports two set-
tings for latency targets using the PSGS metric: PSGS-Strict,
which apply upbound line to present the relationship be-
tween latency and PSGS, it strictly achieves a given latency
bound; while PSGS-Loose, which use average line, it fo-
cuses on high throughput with a relaxed latency bound.
We compare PSGS-Strict, PSGS-Loose, and a fixed batch
size (Batchsize-Bound) as a baseline. We set the target 99
percentile latency to 10 ms for PSGS and a fixed batch size
that the most serves requests below 10 ms. Fig. 10 shows
the CDF plot of the latency of PSGS-Strict, PSGS-Loose
and Batchsize-Bound, which handle 99%, 73%, and 55% of
queries within 10 ms, respectively. While having a higher
latency bound, PSGS-Loose maintains higher throughput
(11,700 reqs/sec), which is 57% higher than PSGS-Strict’s
throughput (8,800 reqs/sec). This shows the flexibility of us-
ing the workload-aware PSGS metric, allowing it to be ad-
justed to different scenarios.

6.3 Scalability

Next we evaluate Quiver’s scalability. We increase the through-
put until the systems reach a user latency threshold of 30 ms.
We then report the achieved maximum throughput.

Single server. We first explore how well Quiver scales to
multiple GPUs in a single server in our cluster testbed when
serving the GraphSage model. Fig. 11 shows the achieve
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throughput with an increasing number of GPUs compared
to PyG and DGL: with a small dataset (ogbn-products in
Fig. 11a), Quiver handles 570,000 reqs/sec using a single GPU
- in contrast, DGL and PyG achieves 220,000 reqs/sec (3.8%
fewer) and 200,000 reqs/sec (4.7X fewer), respectively. Quiver
benefits from exploiting multiple pipelines per GPU and its
efficient one-sided reads; with 2-4 GPUs, Quiver is 8.3X and
10.1x faster than DGL and PyG, respectively. By caching fea-
tures across GPUs based on the FAP metrics, Quiver achieves
substantially higher throughput.

For the paper100M dataset (Fig. 11b), when running with
4 GPUs, Quiver benefits from larger total amount of GPU
memory, which enables it to schedule more work to the
GPUs. As a consequence, Quiver is 3.2X and 3.9% faster than
DGL and PyG, respectively.

Cluster testbed. We use the cluster testbed with 3 servers
(2 NVIDIA A6000 GPUs each). The 3 servers have suffi-
cient memory to fit the paper100M dataset. DGL and P3 use
their default strategies to partition the paper100M dataset.
For GAT on a single server (2 GPUs) (see Fig. 12a), Quiver
achieves a 2.8X speedup over both DGL and P3. With 2 servers
(4 GPUs), P3 has better scalability compared to DGL, because
it reduces the features sent over the network. P3 is thus 1.8%
faster than DGL, which is consistent with the results from
the P3 paper [9]. In contrast, Quiver achieves better scala-
bility (3.2x) than P3. Since Quiver replicates graph data and
features in GPU memory, it can reduce communication costs.
It also accounts for InfiniBand connectivity when deciding
between partitioning and replication. Quiver’s throughput
improves with more servers: with 3 servers (6 GPUs), it
is 3.4x and 7.1x faster than P3 and DGL, respectively. For
GraphSage (see Fig. 12b), Quiver achieves better results com-
pared to GAT: with 3 servers (6 GPUs), it manages a 4.8x
and 8.4Xx speedup compared to P3 and DGL, respectively.
GraphSage places a strong emphasis on graph sampling and
uses a smaller GNN model compared to GAT. This means
that Quiver can more effectively optimize its feature place-
ment, e.g., by placing more graph data and features in GPU
memory due to the smaller GraphSage GNN size. It also
increases the benefits of multiplexing GPU pipelines, e.g.,
by executing more feature aggregation, sampling tasks and
DNN inference tasks on GPUs.

Cloud testbed. On the more powerful cloud testbed with
up to 32 GPUs, we use the mag240M dataset, which is the
largest GNN dataset in the OGB benchmark. With 2 servers
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(16 GPUs) (see Fig. 12¢), Quiver achieves 5.5x and 2.8X the
througput of DGL and P3, respectively, when serving the
GAT model. With 4 servers (32 GPUs), Quiver improves
the speedup ratios to 7x and 3.2X, respectively. The same
behavior can be also seen with GraphSage: with 32 GPU,
Quiver achieves speedups of 7.9x and 3.3X compared to DGL
and PyG, respectively. Note that these speed-up ratios are
larger than those in the 16-GPU case.

Quiver’s performance improvement grows with the num-
ber of GPUs (or servers), because it fully utilizes the available
CPU/GPU memory. With more servers, the CPU and GPU
memory increases, but it leads to more intra-server com-
munication. As a result, Quiver replicates more frequently-
accessed feature data to improve locality, reducing the impact
of these communication overheads. In contrast, DGL and P3
cannot fully exploit all cluster memory, and their scalability
becomes limited by these network bottlenecks.

6.4 Robustness to data skew

In this experiment, we investigate if Quiver’s PSGS metric
yields the best performance when facing irregular input data.
We use the reddit dataset and a 2-layer GraphSAGE model.
The fan-out of each layer is set to 25 and 10, respectively. We
use the cluster testbed with 2 NVIDIA A6000 GPUs. We com-
pare three strategies: (i) our workload-aware PSGS strategy
for sampling; (ii) CPU-based sampling; and (iii) GP U-based
sampling. For each strategy, we use a batch size of 96 to con-
struct the initial nodes and then perform neighbor sampling
on the dataset to obtain different workloads: for example, we
select nodes with high degrees and low degrees as seeds in
the large and small workloads, respectively. The small work-
load contains 4X; the medium workload contains 170x; and
the large workload contains 280X the initial nodes. Fig. 13
shows that the PSGS strategy achieves the best performance
in all cases: with the large workload, the GPU-based strategy
performs better than the CPU-based strategy. It utilizes the
GPU’s ability for high throughput/low latency computation
for sampling; with the small workload, the CPU-based strat-
egy performs better, because it can reduces the overhead of
data transfers between CPUs and GPUs. We also compare
the performance of the strategies with different batch sizes.
We use a small batch size of 4 and a large batch size of 96. We
randomly sample batches and perform two-layer neighbour
sampling. As Fig. 13 shows, we observe the same trend as in
Fig. 13: PSGS achieves the best performance irrespective of
the batch size: with large batches, the GPU-based strategy
performs better than the CPU-based strategy; with small
batches, the CPU-based strategy performs better than the
GPU-based strategy.

6.5 Effectiveness of feature placement

We evaluate Quiver’s workload-aware feature placement us-
ing the FAP metric on 2 and 8 servers. We compare against
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Fig. 15: Latency impact of feature placement

two baselines using 4 datasets (Reddit, ogbn-products, ogbn-
papers100m, Live)): (i) hash-based graph partitioning, which
is the default for DGL; and (ii) importance-based graph parti-
tioning, which is used by AliGraph [49]. The latter considers
the degrees of graph nodes and performs a balanced graph
cut, which is similar to Metis [21]. We allow all devices to
have 20% extra memory to replicate data. DGL uses halo
nodes to cache hot data; AliGraph uses an LRU cache for re-
cently accessed data. Fig. 15 shows that Quiver outperforms
DGL and AliGraph in terms of serving latency across all
datasets and platforms: on the Reddit dataset, Quiver has a
serving latency of 4.9 ms and 7.0 ms on 2 and 8 servers, re-
spectively; DGL and AliGraph achieve latencies of 8.5 ms and
6.7 ms on 2 machines, and 12.2 ms and 9.7 ms on 8 machines,
respectively. As the number of servers increases from 2 to 8,
the serving latency increases for all platforms and datasets.
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(a) Paper100M (b) Mag240M
Fig. 16: Throughput of feature collection

This can be attributed to the increased communication over-
head in a distributed setting: with 8 devices, as shown in
Fig. 15b, the performance of hash-based partitioning (DGL)
quickly degrades (e.g., for paper100m, the latency grows
from 259 ms to 370 ms) because it is workload-agnostic. The
performance of AliGraph also slightly decreases (e.g., for
paper100m, the latency grows from 153 ms to 192 ms com-
pared to the 2-device case). In contrast, Quiver sustains a low
latency that is much lower than AliGraph across all datasets.
We speculate that Quiver’s performance improvement over
DGL and AliGraph will become even more significant for
larger deployments due to its more accurate estimation of
data access probabilities and its use of replication.

6.6 Performance of feature collection

Finally, we evaluate the performance of feature collection in
Quiver. We measure the throughput of collecting the feature
data of graph nodes (usually more than 150,000) in a batch
of size 1024 under GraphSage with 2-layer sampling. We
compare Quiver with a state-of-the-art RPC library, Tensor-
Pipe [2], which is the high-performance NCCL-backed RPC li-
brary of PyTorch, as used by DGL. We deploy the experiment
on the cluster testbed with 3 servers interconnected by Infini-
Band. Each pair of GPUs uses NVLink. For the paper100M
dataset (see Fig. 16a), the RPC library collects features at the
rate of 3 GB/s, but Quiver’s feature collection achieves 7 GB/s
using NVLink. With InfiniBand, avoiding the slower Ether-
net links, Quiver reaches 18 GB/s. Since Quiver can leverage



both NVLink and InfiniBand, it achieves a combined through-
put up to 40 GB/s, which is 13X higher than that of the RPC
library. We observe a similar performance improvement for
the larger dataset, such as mag240M (see Fig. 16b). Quiver’s
high feature collection throughput shows the benefit of us-
ing GPUs for feature aggregation together with one-sided
reads that employ CPU by-pass, surpassing the performance
of conventional approaches that coordinate GPU’s collective
communication through CPUs [29].

6.7 Impact of communication links

We report Quiver’s performance (in terms of latency) in dif-
ferent network configurations: Quiver without InfiniBand
and Quiver without NVLink. Specifically, we disable Infini-
Band by using SSD as the storage backend, and we disable
NVLink by following the strategy shown in Fig. 8. When
we disable InfiniBand for the mag240m dataset, the latency
grows by 1.6X from 30.2 ms to 48.9 ms. When we disable
NVLink for the paper100m dataset, the latency grows by
1.5% from 27.4 ms to 41.2 ms. Without the faster connectiv-
ity, the communication between servers and the GPUs must
involve the CPU, which is slower.

7 Conclusions

We described Quiver, a new low-latency GPU-based GNN
serving system that is workload-aware. Quiver achieves low-
latency by dynamically batching requests based on latency
predictions that account for the sampled sub-graph size.
Our experimental results show that Quiver substantially sur-
passes the performance of existing distributed GNN serving
systems.
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